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If you use voice recognition on an Android phone or Google Translate on 

the Internet, you have communicated with neural networks1 trained by 

deep learning. In the last few years, deep learning has generated enough 

profit for Google to cover the costs of all its futuristic projects at Google X, 

including self-driving cars, Google Glass, and Google Brain.2 Google was 

one of the first Internet companies to embrace deep learning; in 2013, it 

hired Geoffrey Hinton, the father of deep learning, and other companies 

are racing to catch up.

The recent progress in artificial intelligence (AI) was made by reverse 

engineering brains. Learning algorithms for layered neural network mod-

els are inspired by the way that neurons communicate with one another 

and are modified by experience. Inside the network, the complexity of the 

world is transformed into a kaleidoscope of internal patterns of activity that 

are the ingredients of intelligence. The network models that I worked on in 

the 1980s were tiny compared with today’s models, which now have mil-

lions of artificial neurons and which are dozens of layers deep. What made 

it possible for deep learning to make big breakthroughs on some of the 

most difficult problems in artificial intelligence was persistence, big data, 

and a lot more computer power.

We’re not good at imagining the impact of a new technology on the 

future. Who could have predicted in 1990, when the Internet went com-

mercial, what impact it would have on the music business? On the taxi 

business? On political campaigns? On almost all aspects of our daily lives? 

There was a similar failure to imagine how computers would change our 

lives. Thomas J. Watson, the president of IBM, is widely quoted as saying in 

1943: “I think there is a world market for maybe five computers.”3 What’s 

hard to imagine are the uses to which a new invention will be put, and 

inventors are no better than anyone else at predicting what those uses will 

be. There is a lot of room between the utopian and doomsday scenarios that 
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x Preface

are being predicted for deep learning and AI, but even the most imagina-

tive science fiction writers are unlikely to guess what their ultimate impact 

will be.

The first draft of The Deep Learning Revolution was written in a few 

focused weeks after hiking in the Pacific Northwest and meditating on the 

remarkable recent shift in the world of artificial intelligence, which had its 

origin many decades earlier. It is a story about a small group of researchers 

challenging an AI establishment that was much better funded and at the 

time the “only game in town.” They vastly underestimated the difficulty of 

the problems and relied on intuitions about intelligence that proved to be 

misleading.

Life on earth is filled with many mysteries, but perhaps the most 

challenging of these is the nature of intelligence. Nature abounds with 

intelligence in many forms, from humble bacterial to complex human 

intelligence, each adapted to its niche in nature. Artificial intelligence will 

also come in many forms that will take their particular places on this spec-

trum. As machine intelligence based on deep neural networks matures, it 

could provide a new conceptual framework for biological intelligence.

The Deep Learning Revolution is a guide to the past, present, and future 

of deep learning. Not meant to be a comprehensive history of the field, it 

is rather a personal view of key conceptual advances and the community 

of researchers who made them. Human memory is fallible and shifts with 

every retelling of a story, a process called “reconsolidation.” The stories in 

this book stretch over forty years, and even though some are as vivid to me 

as if they occurred yesterday, I am well aware that the details have been 

edited by my memory’s retellings over time.

Part I provides the motivation for deep learning and the background 

needed to understand its origins; part II explains learning algorithms in sev-

eral different types of neural network architectures; and part III explores the 

impact that deep learning is having on our lives and what impact it may 

have in years to come. But, as the New York Yankees’ philosopher Yogi Berra 

once said: “It’s tough to make predictions, especially about the future.” Text 

boxes in eight of the chapters to follow provide technical background to 

the story; timelines at the beginning of the three parts keep track of events 

that bear on that story and extend over sixty years.



Timeline

1956—The Dartmouth Artificial Intelligence Summer Research Project 

gave birth to the field of AI and motivated a generation of scientists to 

explore the potential for information technology to match the capabilities 

of humans.

1962—Frank Rosenblatt published Principles of Neurodynamics: Perceptrons 

and the Theory of Brain Mechanisms, which introduced a learning algorithm 

for neural network models with a single layer of variable weights—the pre-

cursor of today’s learning algorithms for deep neural network models.

1962—David Hubel and Torsten Wiesel published “Receptive Fields, Bin-

ocular Interaction and Functional Architecture in the Cat’s Visual Cortex,” 

which reported for the first time the response properties of single neurons 

recorded with a microelectrode. Deep learning networks have an architec-

ture similar to the hierarchy of areas in the visual cortex.

1969—Marvin Minsky and Seymour Papert published Perceptrons, which 

pointed out the computational limitations of a single artificial neuron and 

marked the beginning of a neural network winter.

1979—Geoffrey Hinton and James Anderson organized the Parallel Mod-

els of Associative Memory workshop in La Jolla, California, which brought 

together a new generation of neural network pioneers and led to publica-

tion of Hinton and Anderson’s collected volume by the same title in 1981.

1987—The First Neural Information Processing Systems (NIPS) Confer-

ence and Workshop was held at the Denver Tech Center, bringing together 

researchers from many fields.

I Intelligence Reimagined





Not too long ago it was often said that computer vision could not compete 

with the visual abilities of a one-year-old. That is no longer true: computers 

can now recognize objects in images about as well as most adults can, and 

there are computerized cars on the road that drive themselves more safely 

than an average sixteen-year-old could. And rather than being told how to 

see or drive, computers have learned from experience, following a path that 

nature took millions of years ago. What is fueling these advances is gushers 

of data. Data are the new oil. Learning algorithms are refineries that extract 

information from raw data; information can be used to create knowledge; 

knowledge leads to understanding; and understanding leads to wisdom. 

Welcome to the brave new world of deep learning.1

Deep learning is a branch of machine learning that has its roots in math-

ematics, computer science, and neuroscience. Deep networks learn from 

data the way that babies learn from the world around them, starting with 

fresh eyes and gradually acquiring the skills needed to navigate novel envi-

ronments. The origin of deep learning goes back to the birth of artificial 

intelligence in the 1950s, when there were two competing visions for how 

to create an AI: one vision was based on logic and computer programs, 

which dominated AI for decades; the other was based on learning directly 

from data, which took much longer to mature.

In the twentieth century, when computers were puny and data stor-

age was expensive by today’s standards, logic was an efficient way to solve 

problems. Skilled programmers wrote a different program for each problem, 

and the bigger the problem, the bigger the program. Today computer power 

and big data are abundant and solving problems using learning algorithms 

is faster, more accurate, and more efficient. The same learning algorithm 

can be used to solve many difficult problems; its solutions are much less 

labor intensive than writing a different program for every problem.

1 The Rise of Machine Learning
Chapter 1
The Rise of Machine Learning
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4 Chapter 1

Learning How to Drive

The $2 million cash prize for the Defense Advanced Research Projects 

Agency (DARPA) Grand Challenge in 2005 was won by Stanley, a self-driving 

car instrumented by Sebastian Thrun’s group at Stanford, who taught it 

how to navigate across the desert in California using machine learning. 

The 132-mile course had narrow tunnels and sharp turns, including Beer 

Bottle Pass, a winding mountain road with a sheer drop-off on one side and 

a rock face on the other (figure 1.1). Rather than follow the traditional AI 

approach by writing a computer program to anticipate every contingency, 

Thrun drove Stanley around the desert (figure 1.2), and it learned for itself 

to predict how to steer based on sensory inputs from its vision and distance 

sensors.

Thrun later founded Google X, a skunk works for high-tech projects, 

where the technology for self-driving cars was developed further. Google’s 

self-driving cars have since logged 3.5 million miles driving around the 

San Francisco Bay Area. Uber has deployed a fleet of self-driving cars in 

Pittsburgh. Apple is moving into self-driving cars to extend the range of 

Figure 1.1

Sebastian Thrun with Stanley, the self-driving automobile that won the 2005 DAR-

PA Grand Challenge. This breakthrough jump-started a technological revolution in 

transportation. Courtesy of Sebastian Thrun.
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products that its operating systems control, hoping to repeat its successful 

foray into the cell phone market. Seeing a business that had not changed 

for 100 years transformed before their eyes, automobile manufacturers are 

following in their tracks. General Motors paid $1 billion for Cruise Auto-

mation, a Silicon Valley start-up that is developing driverless technology, 

and invested an additional $600 million in 2017 in research and develop-

ment.2 In 2017, Intel purchased Mobileye, a company that specializes in 

sensors and computer vision for self-driving cars, for $15.3 billion dollars. 

The stakes are high in the multitrillion-dollar transportation sector of the 

economy.

Self-driving cars will soon disrupt the livelihoods of millions of truck 

and taxi drivers. Eventually, there will be no need to own a car in a city 

when a self-driving car can show up in a minute and take you safely to your 

destination, without your having to park it. The average car today is only 

used 4 percent of the time, which means it needs to be parked somewhere 

96 percent of the time. But because self-driving cars can be serviced and 

parked outside cities, vast stretches of city land now covered with parking 

lots can be repurposed for more productive uses. Urban planners are already 

Figure 1.2

Beer Bottle Pass. This challenging terrain was near the end of the 2005 DARPA  

Grand Challenge for a vehicle to drive unassisted by a human through a 132-mile 

off-road desert course. A truck in the distance is just beginning the climb. Courtesy 

of DARPA.
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thinking ahead to the day when parking lots become parkland.3 Parking 

lanes along streets can become real bike lanes. Many other car-related busi-

nesses will be affected, including auto insurance agencies and body shops. 

No more speeding or parking tickets. There will be fewer deaths from drunk 

drivers and from drivers falling asleep at the wheel. Time wasted commut-

ing to work will be freed for other purposes. According to the U.S. Census 

Bureau, in 2014, 139 million Americans spent an average of 52 minutes 

commuting to and from work each workday. That amounts to 29.6 bil-

lion hours per year, or an astounding 3.4 million years of human lives that 

could have been put to better use.4 Highway capacity will be increased by 

a factor of four by caravaning.5 And, once developed and widely used, self-

driving cars that can drive themselves home without a steering wheel will 

put an end to grand theft auto. Although there are many regulatory and 

legal obstacles in the way, when self-driving cars finally become ubiquitous, 

we will indeed be living in a brave new world. Trucks will be the first to 

become autonomous, probably in 10 years; taxis in 15 years and passenger 

cars in 15 to 25 years from start to finish. 

The iconic position that cars have in our society will change in ways 

that we cannot imagine and a new car ecology will emerge. Just as the 

introduction of the automobile more than 100 years ago created many new 

industries and jobs, there is already a fast-growing ecosystem being created 

around self-driving cars. Waymo, the self-driving spin-off from Google, has 

invested $1 billion over 8 years and has constructed a secretive testing facil-

ity in California’s central valley with a 91-acre fake town, including fake 

bicycle riders and fake auto breakdowns.6 The goal is to broaden the train-

ing data to include special and unusual circumstances, called edge cases. 

Rare driving events that occur on highways often lead to accidents. The dif-

ference with self-driving cars is that when one car experiences a rare event, 

the learning experience will propagate to all other self-driving cars, a form 

of collective intelligence. Many similar test facilities are being constructed 

by other self-driving car companies. These create new jobs that did not exist 

before, and new supply chains for the sensors and lasers that are needed to 

guide the cars.7 

Self-driving cars are just the most visible manifestation of a major shift 

in an economy being driven by information technology (IT). Information 

flows through the Internet like water through city pipes. Information accu-

mulates in massive data centers run by Google, Amazon, Microsoft, and 

other IT companies that require so much electrical power that they need 

to be located near hydroelectric plants, and streaming information gener-

ates so much heat that it needs rivers to supply the coolant. In 2013, data 
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centers in the United States consumed 10 million megawatts, equivalent 

to the power generated by thirty-four large power plants.8 But what is now 

making an even bigger impact on the economy is how this information is 

used. Extracted from raw data, the information is being turned into knowl-

edge about people and things: what we do, what we want, and who we are. 

And, more and more, computer-driven devices are using this knowledge to 

communicate with us through the spoken word. Unlike the passive knowl-

edge in books that is externalized outside brains, knowledge in the cloud is 

an external intelligence that is becoming an active part of everyone’s lives.9 

Learning How to Translate

Deep learning is used at Google today in more than 100 services, from 

Street View to Inbox Smart Reply and voice search. Several years ago, engi-

neers at Google realized that they had to scale up these compute-intensive 

applications to cloud levels. Setting out to design a special-purpose chip for 

deep learning, they cleverly designed the board to fit into a hard disk drive 

slot in their data center racks. Google’s tensor processing unit (TPU) is now 

deployed on servers around the world, delivering an order-of-magnitude 

improvement in performance for deep learning applications.

An example of how quickly deep learning can change the landscape is 

the impact it has had on language translation—a holy grail for artificial 

intelligence since it depends on the ability to understand a sentence. The 

recently unveiled new version of Google Translate based on deep learn-

ing represents a quantum leap improvement in the quality of transla-

tion between natural languages. Almost overnight, language translation 

went from a fragmented hit-and-miss jumble of phrases to seamless sen-

tences (figure 1.3). Previous computer methods searched for combinations 

of words that could be translated together, but deep learning looks for  

dependencies across whole sentences.

Alerted about the sudden improvement of Google Translate, on  

November 18, 2016, Jun Rekimoto at the University of Tokyo tested the 

new system by having it translate the opening of Ernest Hemingway’s  

“The Snows of Kilimanjaro” into Japanese and then back into English—

with the following result (guess which one is the original Hemingway):

1: Kilimanjaro is a snow-covered mountain 19,710 feet high, and is said to be the 

highest mountain in Africa. Its western summit is called the Masai “Ngaje Ngai,” 

the House of God. Close to the western summit there is the dried and frozen 

carcass of a leopard. No one has explained what the leopard was seeking at that 

altitude.
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2: Kilimanjaro is a mountain of 19,710 feet covered with snow and is said to be 

the highest mountain in Africa. The summit of the west is called “Ngaje Ngai” 

in Masai, the house of God. Near the top of the west there is a dry and frozen 

dead body of leopard. No one has ever explained what leopard wanted at that 

altitude.10

(Hemingway is #1.)

The next step will be to train larger deep learning networks on para-

graphs to improve continuity across sentences. Words have long cultural 

histories. Vladimir Nabokov, the Russian writer and English-language nov-

elist who wrote Lolita, came to the conclusion that it was impossible to 

translate poetry between languages. His literal translation of Aleksandr 

Pushkin’s Eugene Onegin into English, annotated with explanatory foot-

notes on the cultural background of the verses, made his point.11 Perhaps 

Google Translate will be able to translate Shakespeare someday by integrat-

ing across all of his poetry.12

Learning How to Listen

Another holy grail of artificial intelligence is speech recognition. Until 

recently, speaker-independent speech recognition by computers was 

Figure 1.3

Japanese signs and menus instantly translated into English by Google Translate, 

which is now an app on your smart phone. This is especially useful if you need to 

find the right train in Japan. 
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limited to narrow domains, such as airline reservations. Today, it is unlim-

ited. A summer research project at Microsoft Research by an intern from 

the University of Toronto in 2012 dramatically improved the performance 

of Microsoft’s speech recognition system (figure 1.4).13 In 2016, a team at 

Microsoft announced that its deep learning network with 120 layers had 

achieved human-level performance on a benchmark test for multi-speaker 

speech recognition.14

The consequences of this breakthrough will ripple through society over 

the next few years, as computer keyboards are replaced by natural language 

interfaces. This is already happening with digital assistants as Amazon’s 

Alexa, Apple’s Siri, and Microsoft’s Cortana leapfrog one another into homes 

everywhere. Just as typewriters became obsolete with the widespread use of 

Figure 1.4

Microsoft Chief Research Officer Rick Rashid in a live demonstration of automated 

speech recognition using deep learning on October 25, 2012, at an event in Tianjin, 

China. Before an audience of 2,000 Chinese, Rashid’s words, spoken in English, were 

recognized by the automated system, which first showed them in subtitles below 

Rashid’s screen image and then translated them into spoken Chinese. This high-wire 

act made newsfeeds worldwide. Courtesy of Microsoft Research.
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personal computers, so computer keyboards will someday become museum 

pieces.

When speech recognition is combined with language translation, it will 

become possible to communicate across cultures in real time. Star Trek’s 

Universal Translator is within our reach (figure 1.4). Why did it take so 

long for speech recognition and language translation by computers to reach 

human levels of performance? Is it just a coincidence that these and other 

cognitive capabilities of computers are reaching threshold at the same 

time? All these breakthroughs are being driven by big data.

Learning How to Diagnose

Skin Deep

Service industries and professions will also be transformed as machine 

learning matures and is applied to many other problems where big data 

is available. Medical diagnosis based on the records of millions of patients 

will become more accurate. A recent study applied deep learning to 130,000 

dermatological images for more than 2,000 different diseases—a medical 

database ten times larger than used previously (figure 1.5).15 The study’s net-

work was trained to diagnose each disease from a “test set” of new images 

it had not seen before. Its diagnostic performance on the new images was 

comparable to and in some cases better than that of twenty-one expert 

dermatologists. It will soon be possible for anyone with a smartphone to 

take a photo of a suspicious skin lesion and have it diagnosed instantly, 

a process that now requires a visit to a doctor’s office, a long wait for the 

lesion to be screened by an expert—and payment of a substantial bill. This 

will greatly expand the scope and quality of dermatological care. If indi-

viduals can quickly get an expert assessment, they will see their doctors 

office at an early stage of a skin disease, when it is easier to treat. All doctors 

will become better at diagnosing rare skin diseases with the help of deep 

learning.16

Deep Cancer

The detection of metastatic breast cancer in images of lymph node biopsies 

on slides is done by experts who make mistakes, mistakes that have deadly 

consequences. This is a pattern recognition problem for which deep learn-

ing should excel. And indeed, a deep learning network trained on a large 

dataset of slides for which ground truth was known reached an accuracy 

of 0.925, good but not as good as experts who achieved 0.966 on the same 

test set.17 However, when the predictions of deep learning were combined 
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with the human expert, the result was an almost perfect 0.995. They do bet-

ter together than either alone because deep learning networks and human 

experts have different ways of looking at the same data. Many more lives 

can be saved. This points toward a future in which man and machine work 

together as partners rather than competitors.

Deep Sleep

If you have a serious sleep problem, which 70 percent of us will have 

sometime during our lifetimes, after waiting months to see your doc-

tor (unless your problem is urgent), you will be directed to a sleep clinic, 

where you will be observed overnight attached to dozens of electrodes  

Figure 1.5

Artist’s impression of a deep learning network diagnosing a skin lesion with high 

accuracy, cover of February 2, 2017, issue of Nature.
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to record your electroencephalogram (EEG) and muscle activity while 

you sleep. In the course of each night, you will enter into slow-wave sleep  

and, periodically, into rapid-eye-movement (REM) sleep, during which you 

will dream, but insomnia, sleep apnea, restless leg syndrome, and many 

other sleep disorders can disrupt this pattern. If you had trouble sleeping 

at home, sleeping in a strange bed connected by wires to ominous medi-

cal equipment can be a real challenge. A sleep expert will look over your 

EEG recordings and mark the sleep stages in blocks of 30 seconds, which 

takes several hours to score each eight hours of sleep. You will eventu-

ally get back a report on abnormalities in your sleep pattern and a bill  

for $2,000.

The sleep expert will have been trained to look for telltale features that 

characterize the different sleep stages, based on a system devised in 1968 

by Anthony Rechtshaffen and Alan Kales.18 But, because the features are 

often ambiguous and inconsistent, experts agree only 75 percent of the 

time on how to interpret them. In contrast, Philip Low, a former graduate 

student in my lab, used unsupervised machine learning to automatically 

detect sleep stages with a time resolution of 3 seconds and a concordance 

with human experts of 87 percent, in less than a minute of computer time. 

Moreover, this required recording from only a single location on the head 

rather than many contacts and a bundle of wires that take a long time to 

put on and take off. In 2007, we launched a start-up company, Neurovigil, 

to bring this technology to sleep clinics, but they showed little interest in 

disrupting their cash flow from human scoring. Indeed, with an insurance 

code to bill patients, they had no incentive to adopt a cheaper procedure. 

Neurovigil found another market in large drug companies that run clinical 

trials and need to test the effects of their drugs on sleep patterns, and it is 

now entering the market for long-term care facilities, where elderly often 

have progressive sleep problems.

The sleep clinic model is flawed because health problems can’t be reli-

ably diagnosed based on such restricted circumstances: Everyone has a dif-

ferent baseline, and departures from that baseline are the most informative. 

Neurovigil already has a compact device, the iBrain, which can record your 

EEG at home, transmit the data to the Internet and analyze the data longi-

tudinally for trends and anomalies. This will allow doctors to detect health 

problems early when it is easier to treat them and to stop the development 

of chronic illnesses. There are other diseases whose treatment would benefit 

from continuous monitoring, such as type 1 diabetes, for which the level of 

sugar in the blood could be monitored and regulated by delivery of insulin. 
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Access to cheap sensors that can record data continuously is having a major 

impact on diagnosis and treatment of other chronic diseases.

There are several lessons to be learned from the Neurovigil experience. 

Although having better and cheaper technology does not translate easily 

into a marketable new product or service, even a far superior one, when an 

incumbent is entrenched in the market, there are secondary markets where 

the new technology can have a more immediate impact and buy time to 

improve and better compete. This is how the technologies of solar energy 

and of many other new industries entered the market. In the long run, sleep 

monitoring and new technologies with demonstrated advantages will reach 

patients at home and eventually be integrated into medical practice.

Learning How to Make Money

More than 75 percent of trading on the New York Stock Exchange is auto-

mated (figure 1.6), fueled by high-frequency trades that move into and out 

of positions in fractions of a second. (When you don’t have to pay for each 

transaction, even small advantages can be parlayed into big profits.) Algo-

rithmic trading on a longer time scale takes into account longer-term trends 

based on big data. Deep learning is getting better and better at making both 

more money and higher profits.19 The problem with predicting the finan-

cial markets is that the data are noisy and conditions are not stationary—

psychology can change overnight after an election or international conflict. 

This means that an algorithm that predicts stock values today may not 

work tomorrow. In practice, hundreds of algorithms are used and the best 

ones are continually combined to optimize returns. 

Back in the 1980s, when I was consulting for Morgan Stanley on neu-

ral network models of stock trading, I met David Shaw, a computer scien-

tist who specialized in designing parallel computers. On leave of absence 

from Columbia University, Shaw was working as a quantitative analyst, or 

“quant,” in the early days of automated trading. He would go on to start his 

own investment management firm on Wall Street, the D. E. Shaw Group, 

and he is now a multibillionaire. The D. E. Shaw Group has been highly 

successful, but not as successful as another hedge fund, Renaissance Tech-

nologies, which was founded by James Simons, a distinguished mathema-

tician and former chair of the Mathematics Department at Stony Brook 

University. Simons made $1.6 billion in 2016 alone, and this wasn’t even 

his best year.20 Called “the best physics and mathematics department in the 

world,”21 Renaissance “avoids hiring anyone with even the slightest whiff 

of Wall Street bona fides.”22
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No longer involved in the daily operation of D. E. Shaw, David Shaw is 

now engrossed in D. E. Shaw Research, which has built a special-purpose 

parallel computer, called “Anton,” that performs protein folding much 

faster than any other computer on the planet.23 Simons has retired from 

overseeing Renaissance and has started a foundation that funds research 

on autism and other programs in the physical and biological sciences. 

Through the Simons Institute for the Theory of Computing at UC Berkeley, 

the Simons Center for the Social Brain at MIT, and the Flatiron Institute in 

New York, Shaw’s philanthropy has had a major impact on advancing com-

putational methods for data analysis, modeling, and simulation.24

Financial services more broadly are undergoing a transformation under 

the banner of financial technology, or “fintech,” as it has come to be called. 

Information technology such as block chain, which is a secure Internet 

ledger that replaces financial middlemen in transactions, is being tested on 

a small scale but could soon disrupt multitrillion-dollar financial markets. 

Machine learning is being used to improve credit evaluation on loans, to 

accurately deliver business and financial information, to pick up signals on 
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Machine learning is driving algorithmic trading, which is faster than traditional 

long-term investment strategies and more deliberate than high-frequency trading 

(HFT) in stock markets. Many different kinds of machine learning algorithms are 

combined to achieve best returns. 
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social media that predict market trends, and to provide biometric security 

for financial transactions. Whoever has the most data wins, and the world 

is awash with financial data.

Learning the Law

Deep learning is just beginning to affect the legal profession. Much of the 

routine work of associates in law firms who charge hundreds of dollar an 

hour will be automated, especially in large, high-value commercial offices. 

In particular, technology-assisted review, or discovery, will be taken over by 

artificial intelligence, which can sort through thousands of documents for 

legal evidence without getting tired. Automated deep learning systems will 

also help law firms comply with the increasing complexity of governmental 

regulations. They will make legal advice available for the average person 

who cannot now afford a lawyer. Not only will legal work be cheaper; it will 

be much faster, a factor that is often more important than its expense. The 

world of law is well on its way to becoming “Legally Deep.”25

Learning How to Play Poker

Heads-up no-limit Texas hold ’em is one of the most popular versions of 

poker, commonly played in casinos, and the no-limit betting form is played 

at the main event of the World Series of Poker (figure 1.7). Poker is chal-

lenging because, unlike chess, where both players have access to the same 

information, poker players have imperfect information, and, at the highest 

levels of play, skills in bluffing and deception are as important as the cards 

that are dealt.

The mathematician John von Neumann, who founded mathematical 

game theory and pioneered digital computers, was particularly fascinated 

with poker. As he put it: “Real life consists of bluffing, of little tactics of 

deception, of asking yourself what is the other man going to think I mean 

to do. And that is what games are about in my theory.”26 Poker is a game 

that reflects parts of human intelligence that were refined by evolution. 

A deep learning network called “DeepStack” played 44,852 games against 

thirty-three professional poker players. To the shock of poker experts, it beat 

the best of the poker players by a sizable margin, one standard deviation, 

but it beat the thirty-three players overall by four standard deviations—an 

immense margin.27 If this achievement is replicated in other areas where 

human judgment based on imperfect information is paramount, such as pol-

itics and international relations, the consequences could be far reaching.28
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Learning How to Play Go

In March 2016, Lee Sedol, the Korean Go 18-time world champion, played 

and lost a five-game match against DeepMind’s AlphaGo (figure 1.8), a 

Go-playing program that used deep learning networks to evaluate board 

positions and possible moves.29 Go is to Chess in difficulty as chess is to 

checkers. If chess is a battle, Go is a war. A 19×19 Go board is much larger 

than an 8×8 chessboard, which makes it possible to have several battles 

raging in different parts of the board. There are long-range interactions 

between battles that are difficult to judge, even by experts. The total num-

ber of legal board positions for Go is 10170, far more than the number of 

atoms in the universe.

In addition to several deep learning networks to evaluate the board and 

choose the best move, AlphaGo had a completely different learning system, 

one used to solve the temporal credit assignment problem: which of the 

many moves were responsible for a win, and which were responsible for a 

loss? The basal ganglia of the brain, which receive projections from the entire 

cerebral cortex and project back to it, solve this problem with a temporal 

difference algorithm and reinforcement learning. AlphaGo used the same 

learning algorithm that the basal ganglia evolved to evaluate sequences of 

Figure 1.7

Heads-up no-limit Texas hold ’em. Aces in the hole. Bluffing in high stakes poker has 

been mastered by DeepStack, which has beaten professional poker players at their 

own game by a wide margin.
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actions to maximize future rewards (a process that will be explained in chap-

ter 10). AlphaGo learned by playing itself—many, many times 

The Go match that pitted AlphaGo against Lee Sedol had a large follow-

ing in Asia, where Go champions are national figures and treated like rock 

stars. AlphaGo had earlier defeated a European Go champion, but the level 

of play was considerably below the highest levels of play in Asia, and Lee 

Sedol was not expecting a strong match. Even DeepMind, the company 

that had developed AlphaGo, did not know how strong their deep learning 

program was. Since its last match, AlphaGo had played millions of games 

with several versions of itself and there was no way to benchmark how 

good it was.

It came as a shock to many when AlphaGo won the first three of five 

games, exhibiting an unexpectedly high level of play. This was riveting 

viewing in South Korea, where all the major television stations had a run-

ning commentary on the games. Some of the moves made by AlphaGo 

were revolutionary. On the thirty-eighth move in the match’s second game, 

AlphaGo made a brilliantly creative play that surprised Lee Sedol, who took 

nearly ten minutes to respond. AlphaGo lost the fourth game, a face-saving 

win for humans, and ended the match by winning four games to one (fig-

ure 1.9).30 I stayed up into the wee hours of those March nights in San 

Diego and was mesmerized by the games. They reminded me of the time 

Figure 1.8

Go board during play in the five-game match that pitted Korean Go champion Lee 

Sedol against AlphaGo, a deep learning neural network that had learned how to play 

Go by playing itself.
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I sat glued to the TV in Cleveland on June 2, 1966, at 1:00 a.m., as the 

Surveyor robotic spacecraft landed on the moon and beamed back the first 

photo of a moonscape.31 I witnessed these historic moments in real time. 

AlphaGo far exceeded what I and many others thought was possible.

On January 4, 2017, a Go player on an Internet Go server called “Mas-

ter” was unmasked as AlphaGo 2.0 after winning sixty out of sixty games 

against some of the world’s best players, including the world’s reigning Go 

champion, the nineteen-year-old prodigy Ke Jie of China. It revealed a new 

style of play that went against the strategic wisdom of the ages. On May 

27, 2017, Ke Jie lost three games to AlphaGo at the Future of Go Summit in 

Wuzhen, China (figure 1.10). These were some of the best Go games ever 

played, and hundreds of millions of Chinese followed the match. “Last 

year, I think the way AlphaGo played was pretty close to human beings, but 

today I think he plays like the God of Go,” Ke Jie concluded.32 

After the first game, which he lost by a razor-thin margin of one-half 

point, Ke Jie said that he “was very close to winning the match in the 

middle of the game” and that he was so excited “I could feel my heart 

thumping! Maybe because I was too excited I made some stupid moves. 

Maybe that’s the weakest part of human beings.”33 What Ke Jie experienced 

was an emotional overload, but a less elevated level of emotions is needed 

to reach peak performance. Indeed, stage actors know that if they don’t 

have butterflies in their stomachs before their performances, they won’t be 

Figure 1.9

Lee Sedol after losing the Go Challenge Match in March 2016. 
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in good form. Their performances follow an inverted U-shaped curve, with 

their best ones in an optimal state between low and high levels of arousal. 

Athletes call this being “in the zone.”

AlphaGo also defeated a team of five top players on May 26, 2017. These 

players have analyzed the moves made by AlphaGo and are already chang-

ing their strategies. In a new version of “ping-pong diplomacy,” the match 

was hosted by the Chinese government. China is making a large invest-

ment in machine learning, and a major goal of their brain initiative is to 

mine the brain for new algorithms.34 

The next chapter in this Go saga is even more remarkable, if that is 

possible. AlphaGo was jump-started by supervised learning from 160,000 

human Go games before playing itself. Some thought this was cheating—

an autonomous AI program should be able to learn how to play Go without 

human knowledge. In October, 2017, a new version, called AlphaGo Zero, 

was revealed that learned to play Go starting with only the rules of the 

game, and trounced AlphaGo Master, the version that beat Kie Jie, winning 

100 games to none.35 Moreover, AlphaGo Zero learned 100 times faster and 

with 10 times less compute power than AlphaGo Master. By completely 

ignoring human knowledge, AlphaGo Zero became super-superhuman. 

Figure 1.10

Demis Hassabis (left) and Ke Jie meet after the historic Go match in China in 2017, 

holding a board with Ke Jie’s signature. Courtesy of Demis Hassabis.
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There is no known limit to how much better AlphaGo might become as 

machine learning algorithms continue to improve.

AlphaGo Zero had dispensed with human play, but there was still a lot 

of Go knowledge handcrafted into the features that the program used to 

represent the board. Maybe AlphaGo Zero could improve still further with-

out any Go knowledge. Just as Coca-Cola Zero stripped all the calories from 

Coca-Cola, all domain knowledge of Go was stripped from AlphaZero. As a 

result, AlphaZero was able to learn even faster and decisively beat AlphaGo 

Zero.36 To make the point that less is more even more dramatically, Alp-

haZero, without changing a single learning parameter, learned how to play 

chess at superhuman levels, making alien moves that no human had ever 

made before. AlphaZero did not lose a game to Stockfish, the top chess pro-

gram already playing at superhuman levels. In one game, AlphaZero made 

a bold bishop sacrifice, sometimes used to gain positional advantage, fol-

lowed by a queen sacrifice, which seemed like a colossal blunder until it led 

to a checkmate many moves later that neither Stockfish nor humans saw 

coming. The aliens have landed and the earth will never be the same again. 

AlphaGo’s developer, DeepMind, was cofounded in 2010 by neurosci-

entist Demis Hassabis (figure 1.10, left), who had been a postdoctoral fel-

low at University College London’s Gatsby Computational Neuroscience 

Unit (directed by Peter Dayan, a former postdoctoral fellow in my lab and 

winner of the prestigious Brain Prize in 2017 along with Raymond Dolan 

and Wolfram Schultz for their research on reward learning). DeepMind was 

acquired by Google for $600 million in 2014. The company employs more 

than 400 engineers and neuroscientists in a culture that is a blend between 

academia and start-ups. The synergies between neuroscience and AI run 

deep and are quickening.

Learning How to Become More Intelligent

Is AlphaGo intelligent? There has been more written about intelligence 

than any other topic in psychology except consciousness, both of which 

are difficult to define. Psychologists since the 1930s distinguish between 

fluid intelligence, which uses reasoning and pattern recognition in new sit-

uations to solve new problems, without depending on previous knowledge, 

and crystallized intelligence, which depends on previous knowledge and is 

what the standard IQ tests measure. Fluid intelligence follows a develop-

mental trajectory, reaching a peak in early adulthood and decreasing with 

age, whereas crystallized intelligence increases slowly and asymptotically 

as you age until fairly late in life. AlphaGo displays both crystallized and 
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fluid intelligence in a rather narrow domain, but within this domain, it 

has demonstrated surprising creativity. Professional expertise is also based 

on learning in narrow domains. We are all professionals in the domain of 

language and practice it every day.

The reinforcement learning algorithm used by AlphaGo can be applied 

to many problems. This form of learning depends only on the reward given 

to the winner at the end of a sequence of moves, which paradoxically can 

improve decisions made much earlier. When coupled with many power-

ful deep learning networks, this leads to many domain-dependent bits 

of intelligence. And, indeed, cases have been made for different domain-

dependent kinds of intelligence: social, emotional, mechanical, and con-

structive, for example.37 The “g factor” that intelligence tests claim to 

measure is correlated with these different kinds. There are reasons to be cau-

tious about interpreting IQ tests. The average IQ has been going up all over 

the world by three points per decade since it was first studied in the 1930s, 

a trend called the “Flynn effect.” There are many possible explanations 

for the Flynn effect, such as better nutrition, better health care, and other 

environmental factors.38 This is quite plausible because the environment 

affects gene regulation, which in turn affects brain connectivity, leading 

to changes in behavior.39 As humans increasingly are living in artificially 

created environments, brains are being molded in ways that nature never 

intended. Could it be that humans have been getting smarter over a much 

longer period of time? For how long will the increase in IQ continue? The 

incidence of people playing computers in chess, backgammon, and now Go 

has been steadily increasing since the advent of computer programs that 

play at championship levels, and so has the machine augmented intelli-

gence of the human players.40 Deep learning will boost the intelligence not 

just of scientific investigators but of workers in all professions.

Scientific instruments are generating data at prodigious rate. Elementary 

particle collisions at the Large Hadron Collider (LHC) in Geneva gener-

ate 25 petabyes of data each year. The Large Synoptic Sky Telescope (LSST) 

will generate 6 petabytes of data each year. Machine learning is being used 

to analyze the huge physics and astronomy datasets that are too big for 

humans to search by traditional methods.41 For example, DeepLensing is 

a neural network that recognizes images of distant galaxies that have been 

distorted by light bending by “gravitational lenses” around another galaxy 

along the line of sight. This allows many new distant galaxies to be auto-

matically discovered. There are many other “needle-in-a-haystack” prob-

lems in physics and astronomy for which deep learning vastly amplifies 

traditional approaches to data analysis.
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The Shifting Job Market

Introduced by banks in the late 1960s to dispense cash to account holders 

24/7, a much-welcomed convenience for those in need of cash before or 

after normal banking hours, automated teller machines (ATMs) have since 

acquired the ability to read handwritten checks. And though they reduced 

routine work for bank tellers, there are more bank tellers than before 

providing customers with personalized services such as mortgage and 

investment advice, and new ATM repair jobs42—just as the steam engine 

displaced manual laborers, on the one hand, but gave rise to new jobs for 

skilled workers who could build and maintain steam engines and drive 

steam locomotives, on the other. So, too, Amazon’s online marketing has 

displaced many workers from local brick-and-mortar retail stores but has 

also created 380,000 new jobs for workers in the distribution and delivery 

of the goods sold by it and by the many businesses under its umbrella.43 

And as jobs that now require human cognitive skills are taken over by 

automated AI systems, there will be new jobs for those who can create and 

maintain these systems.

Job turnover is nothing new. Farmworkers in the nineteenth century 

were displaced by machines, and new jobs were created at city factories 

made possible by machines, all of which required an educational system 

to train workers in new skills. The difference is that, today, the new jobs 

being opened up by artificial intelligence will require new, different, and 

ever-changing skills in addition to traditional cognitive skills.44 So we 

will need to learn throughout our lifetimes. For this to happen, we will 

need a new educational system that is based at the home rather than the  

school.

Fortunately, just as the need for finding new jobs has become acute, the 

Internet has made available free massive open online courses (MOOCs) to 

acquire new knowledge and skills. Though still in their infancy, MOOCs 

are evolving rapidly in the education ecosystem and hold great promise for 

delivering quality instruction to a wider range of people than ever before. 

When coupled with the next generation of digital assistants, MOOCs could 

be transformational. Barbara Oakley and I developed a popular MOOC 

called “Learning How to Learn” that teaches you how to become a better 

learner (figure 1.11) and a follow-up MOOC called “Mindshift” that teaches 

you how to reinvent yourself and change your lifestyle (both MOOCs will 

be described in chapter 12).

As you interact with the Internet, you are generating big data about 

yourself that is machine readable. You are being targeted by ads generated 
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from the digital bread crumbs you have left behind on the Internet. The 

information you reveal on Facebook and other social media sites can be 

used to create a digital assistant that knows you better than almost anyone 

else in the world and will not forget anything, becoming, in effect, your 

virtual doppelganger. By pressing both Internet tracking and deep learn-

ing into service, the educational opportunities for the children of today’s 

children will be better than the best available today to wealthy families. 

These grandchildren will have their own digital tutors, who will accom-

pany them throughout the trajectory of their education. Not only will edu-

cation become more individualized; it will become more precise. There are 

already a wide range of educational experiments under way throughout 

the world at programs like the Kahn Academy and funded by the Gates, 

Chan-Zuckerberg, and other philanthropic foundations that are testing 

software to make it possible for all children to progress at their own pace 

throughout their formal education and to adapt to the specific needs of 

each child.45 The widespread availability of digital tutors will free teachers 

from the repetitive parts of teaching, like grading, and allow them to do 

what humans do best—emotional support for struggling students and intel-

lectual inspiration for gifted students. Educational technology—edtech—is 

moving rapidly ahead, and the transition to precision education could be 

quite fast compared to self-driving cars because the obstacles it must over-

come are much less daunting, the demand is much greater, and education 

in the U.S. is a trillion-dollar market.46 One major concern will be who has 

access to the internal files of the digital assistants and digital tutors. 

Is Artificial Intelligence an Existential Threat?

When AlphaGo convincingly beat Lee Sedol at Go in 2016, it fueled a 

reaction that had been building over the last several years concerning the 

Figure 1.11

“Learning How to Learn,” a massive open online course (MOOC) that teaches you 

how to become a better learner is the most popular MOOC on the Internet, with over 

3 million learners. Courtesy of Terrence Sejnowski and Barbara Oakley.
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dangers that artificial intelligence might present to humans. Computer sci-

entists signed pledges not to use AI for military purposes. Stephen Hawking 

and Bill Gates made public statements warning of the existential threat 

posed by AI. Elon Musk and other Silicon Valley entrepreneurs set up a 

new company, OpenAI, with a one-billion-dollar nest egg and hired Ilya 

Sutskever, one of Geoffrey Hinton’s former students, to be its first direc-

tor. Although OpenAI’s stated goal was to ensure that future AI discover-

ies would be publicly available for all to use, it had another, implicit and 

more important goal—to prevent private companies from doing evil. For, 

with AlphaGo’s victory over world Go champion Sedol, a tipping point had 

been reached. Almost overnight, artificial intelligence had gone from being 

judged a failure to being perceived as an existential threat.

This is not the first time an emergent technology has seemed to pose an 

existential threat. The invention, development, and stockpiling of nuclear 

weapons threatened to blow up the world, but somehow we have managed 

to keep that from happening, at least until now. When recombinant DNA 

technology first appeared, there was fear that deadly engineered organisms 

would be set loose to cause untold suffering and death across the globe. 

Genetic engineering is now a mature technology, and so far we have man-

aged to survive its creations. The recent advances in machine learning pose 

a relatively modest threat compared to nuclear weapons and killer organ-

isms. We will also adapt to artificial intelligence, and, indeed, this is already 

happening.

One of the implications of DeepStack’s success is that a deep learning 

network can learn how to become a world-class liar. What deep networks 

can be trained to do is limited only by the trainer’s imagination and data. If 

a network can be trained to safely drive a car, it can also be trained to race 

Formula 1 cars, and someone probably is willing to pay for it. Today it still 

requires skilled and highly trained practitioners to build products and ser-

vices using deep learning, but as the cost of computing power continues to 

plummet and as software becomes automated, it will soon become possible 

for high school students to build AI applications. Otto, the highest-earning 

online e-commerce company in Germany for clothing, furnishings, and 

sport, is using deep learning to predict ahead of time what its custom-

ers are likely to order based on their past history of ordering and then to 

preorder it for them.47 With 90 percent accuracy, customers receive mer-

chandise almost before they order it. Done automatically without human 

intervention, preordering not only saves the company millions of euros a 

year in reduced surplus stock and product returns but also results in greater 
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customer satisfaction and retention. Rather than displacing Otto’s work-

ers, deep learning has boosted their productivity. AI can make you more 

productive at your job.

Although the major high-tech companies have pioneered deep learn-

ing applications, machine learning tools are already widely available and 

many other companies are beginning to benefit. Alexa, a wildly popular 

digital assistant operating in tandem with the Amazon Echo smart speaker, 

responds to natural language requests based on deep learning. Amazon 

Web Services (AWS) has introduced toolboxes called “Lex,” “Poly” and 

“Comprehend” that make it easy to develop the same natural language 

interfaces based on automated test-to-speech, speech recognition and natu-

ral language understanding, respectively. Applications with conversational 

interactions are now within the reach of smaller businesses that can’t afford 

to hire machine learning experts. AI can enhance customer satisfaction.

When chess-playing computer programs eclipsed the best human chess 

players, did that stop people from playing chess? On the contrary, it raised 

their level of play. It also democratized chess. The best chess players once 

came from big cities like Moscow and New York that had a concentration 

of grandmasters who could teach younger players and raise their level of 

play. Chess-playing computer programs made it possible for Magnus Carl-

son, who grew up in a small town in Norway, to become a chess grand-

master at thirteen, and today he is the world chess champion. The benefits 

of artificial intelligence will affect not just the playing of games, however, 

but every aspect of human endeavor, from art to science. AI can make you  

smarter.48

Back to the Future

The Deep Learning Revolution has two intertwined themes: how human 

intelligence evolved and how artificial intelligence is evolving. The big 

difference between the two kinds of intelligence is that it took human 

intelligence many millions of years to evolve, but artificial intelligence is 

evolving on a trajectory measured in decades. Although this is warp speed 

even for cultural evolution, fastening our seat belts may not be the right  

response. 

The recent breakthroughs in deep learning were not the overnight suc-

cesses that you might have gathered from press reports. The story behind 

the shift from artificial intelligence based on symbols, logic, and rules to 

deep learning networks based on big data and learning algorithms is not 
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generally known. The Deep Learning Revolution tells that story and explores 

the origins and consequences of deep learning from my perspective both 

as a pioneer in developing learning algorithms for neural networks in the 

1980s and as the president of the Neural Information Processing Systems 

(NIPS) Foundation, which has overseen discoveries in machine learning 

and deep learning over the last thirty years. My colleagues and I in the 

neural network community were for many years the underdogs, but our 

persistence and patience eventually prevailed.



Marvin Minsky was a brilliant mathematician and a founder of the MIT 

Artificial Intelligence Laboratory (MIT AI Lab).1 Founders set the direction 

and the culture of a field, and, thanks in no small part to Minsky, artifi-

cial intelligence at MIT in the 1960s was a bastion of cleverness. Bubbling 

over with more ideas per minute than anyone else I knew, he could con-

vince you that his take on a problem was right, even when common sense 

told you otherwise. I admired his boldness and his cleverness—but not the 

direction that he took AI.

Child’s Play?

Blocks World is a good example of a project that came out of the MIT AI 

Lab in the 1960s. To simplify the problem of vision, Blocks World consisted 

of rectangular building blocks that could be stacked to create structures 

(figure 2.1). The goal was to write a program that could interpret a com-

mand, such as “Find a large yellow block and put it on top of the red block,” 

and plan the steps needed for a robot arm to carry out the command. This 

seems like child’s play, but a large, complex program had to be written, 

one that became so cumbersome that it could not be readily debugged and 

was effectively abandoned when the student who wrote the program, Terry 

Winograd, left MIT. This seemingly simple problem was much harder than 

anyone thought it would be, and, even if it had succeeded, there was no 

direct path from Blocks World to the real world, where objects come in 

many shapes, sizes, and weights, and not all angles are right angles. Com-

pared to a controlled laboratory setting where the direction and level of 

lighting can be fixed, in the real world, lighting can vary dramatically from 

place to place and time to time, which greatly complicates the task of object 

recognition for computers.

2 The Rebirth of Artificial Intelligence
Chapter 2
The Rebirth of Artificial Intelligence
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In the 1960s, the MIT AI Lab received a large grant from a military 

research agency to build a robot that could play Ping-Pong. I once heard a 

story that the principal investigator forgot to ask for money in the grant pro-

posal to build a vision system for the robot, so he assigned the problem to a 

graduate student as a summer project. I once asked Marvin Minsky whether 

the story was true. He snapped back that I had it wrong: “We assigned the 

problem to undergraduate students.” A document from the archives at MIT 

confirms his version of the story.2 What looked like it would be an easy 

problem to solve proved to be quicksand that swallowed a generation of 

researchers in computer vision.

Why Vision Is a Hard Problem

We rarely have difficulty identifying what an object is despite differences 

in the location, size, orientation, and lighting of the object. One of the 

earliest ideas in computer vision was to match a template of the object with 

the pixels in the image, but that approach failed because the pixels of the 

two images of the same object in different orientations don’t match. For 

example, consider the two birds in figure 2.2. If you shift the image of one 

bird over the other, you can get a part to match, but the rest is out of regis-

ter; but you can get a fairly good match to an image of another bird species 

in the same pose.

Figure 2.1

Marvin Minsky watching a robot stacking blocks around 1968. Blocks World was a 

simplified version of how we interact with the world, but it was far more complex 

than anyone imagined, and was not solved until 2016 by deep learning.
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Progress in computer vision was made by focusing not on pixels but 

on features. For example, birders have to become experts in distinguishing 

between different species that may differ in only a few subtle markings. A 

practical and popular book on identifying birds has only one photograph 

of a bird, but many schematic drawings pointing out the subtle differences 

between them (figure 2.3).3 A good feature is one that is unique to one bird 

species, but because the same features are found on many species, what 

makes it possible to identify a bird is the unique combination of several 

field marks such as wing bars, eye stripes, and wing patches. And when 

these field marks are shared by closely related species, there are calls and 

songs that distinguish one from another. Drawings or paintings of birds are 

much better at directing our attention to the relevant distinguishing fea-

tures than are photographs, which are filled with hundreds of less relevant 

features (figure 2.3).

The problem with this features-based approach is not just that it is very 

labor intensive to develop feature detectors for the hundreds of thousands 

of different objects in the world, but that, even with the best feature detec-

tors, ambiguities arise from images of objects that are partially occluded, 

which makes recognizing objects in cluttered scenes a daunting task for 

computers.

Figure 2.2

Zebra finches consulting with each other. We have no difficulty seeing that they 

are the same species. But because they have different orientations to the viewer it is 

difficult to compare them with templates even though they have almost identical 

features. 
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Little did anyone suspect in the 1960s that it would take fifty years and 

a millionfold increase in computer power before computer vision would 

reach human levels of performance. The misleading intuition that it would 

be easy to write a computer vision program is based on activities that we 

find easy to do, such as seeing, hearing, and moving around—but that 

took evolution millions of years to get right. Much to their chagrin, early 

AI pioneers found the computer vision problem to be extremely hard to 

solve. In contrast, they found it much easier to program computers to prove 

mathematical theorems—a process thought to require the highest levels of 

intelligence—because computers turn out to be much better at logic than 

we are. Being able to think logically is a late development in evolution and, 

even in humans, requires training to follow a long line of logical proposi-

tions to a rigorous conclusion, whereas, for most problems we need to solve 

to survive, generalizations from previous experiences work well for us most 

of the time.

Expert Systems

Popular in the 1970s and 1980s, AI expert systems were developed to solve 

problems like medical diagnosis using a set of rules. Thus an early expert 

system, MYCIN, was developed to identify the bacteria responsible for infec-

tious diseases such as meningitis.4 Following the expert system approach, 

MYCIN’s developers had first to collect facts and rules from infectious dis-

ease experts, as well as symptoms and medical histories from the patients, 

then to enter these into the system’s computer, and finally to program the 

Figure 2.3

Distinctive feature that can be used to discriminate between similar birds. The arrows 

point toward the location of where to find wing bars that are especially important for 

telling apart families of warblers: Some are conspicuous, some obscure, some double, 

some long, some short. From Peterson, Mountfort, and Hollom, Field Guide to the 

Birds of Britain and Europe, 5th ed., p.16.
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computer to make inferences using logic. The developers ran into difficul-

ties in collecting the facts and rules from the experts, however, especially 

in the more complex domains, where the best diagnosticians rely not on 

rules but on pattern recognition based on experience, which is difficult 

to codify,5 and where their system had to be continually updated as new 

facts were discovered and old rules became obsolete. And they encountered 

further difficulties in collecting and entering the patients’ symptoms and 

medical histories into the system’s computer, a process that could take a 

half hour or longer per patient, more time than a busy physician could 

afford. Not surprisingly, MYCIN was never used clinically. Although many 

expert systems were written for other applications such as toxic spill man-

agement, mission planning for autonomous vehicles, and speech recogni-

tion, few are in use today.

Researchers tried many different approaches in the early decades of AI, 

but their approaches were more clever than they were practical. Not only 

did they underestimate the complexity of real-world problems, but the 

solutions they proposed scaled badly. In complex domains, the number of 

rules can be enormous, and as new facts are added by hand, keeping track 

of exceptions to and interactions with other rules becomes impractical. 

Douglas Lenat, for example, started a project called “Cyc” in 1984 to codify 

common sense, which seemed like a good idea at the time but turned out 

to be a nightmare in practice.6 We take for granted a boundless number of 

facts about the way the world works, most of which are based on experi-

ence. For example, a cat falling from 40 feet will probably avoid harm,7 but 

a human falling from the same height probably won’t.

Another reason why progress in early AI was so slow was that digital 

computers were incredibly primitive and memory forbiddingly expensive 

by today’s standards. But because digital computers are highly efficient at 

logical operations, symbol manipulation, and the application of rules, it is 

not too surprising that these computational primitives would be favored 

in the twentieth century. Thus Allen Newell and Herbert Simon, two com-

puter scientists from Carnegie Mellon University, were able to write a com-

puter program called “Logic Theorist” in 1955 that could prove the logical 

theorems in Principia Mathematica, Alfred North Whitehead and Bertrand 

Russell’s attempt to systematize all of mathematics. There were great expec-

tations in these early days that intelligent computers were just around the 

corner.

AI pioneers who sought to write computer programs with the function-

ality of human intelligence did not care how the brain actually achieved 

intelligent behavior. When I asked Allen Newell why, he told me that he 
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personally had been open to insights from brain research, but that there 

simply hadn’t been enough known at the time to be of much use. Basic 

principles of brain function were just emerging in the 1950s, led by the 

work of Alan Hodgkin and Andrew Huxley, who explained how signals 

from the brain are carried over a long distance by all-or-none electrical 

spikes in nerves, and of Bernard Katz, who discovered clues to how these 

electrical signals are converted into chemical signals at synapses, which 

communicate between neurons.8

Although, by the 1980s, more was both known about the brain and more 

widely accessible outside the field of biology, the brain itself had become 

irrelevant for the new generation of AI researchers, whose goal was to write 

a program that was functionally equivalent to how the brain worked. In 

philosophy this stance was called functionalism, which for many was a 

good excuse to ignore the messy details in biology. But a small group of AI 

researchers who were not part of the mainstream believed that an approach 

to artificial intelligence inspired by the actual biology of the brain and 

variously called “neural networks,” “connectionism,” and “parallel distrib-

uted processing” could eventually solve difficult problems that had eluded  

logic-based AI.

I was one of that group.

Into the Lion’s Den

In 1989, Michael Dertouzos, head of MIT’s Computer Science Labora-

tory, invited me to give a distinguished lecture at MIT on my pioneering 

approach to AI based on neural networks (figure 2.4). On arriving there, I 

was warmly greeted by Dertouzos, who, as we rode together in the eleva-

tor, told me that it was an MIT tradition for the distinguished lecturer to 

take five minutes to open a discussion with faculty and students on his or 

her topic over lunch. “And,” he added as the doors of the elevator opened, 

“they hate what you do.”

The room was packed with perhaps as many as a hundred people, which 

surprised even Dertouzos. Scientists were standing in circles three rows 

deep: the first row for senior faculty, junior faculty in the second row, and 

students in the rows beyond them. And I was in the center, stationed in 

front of the buffet, the main dish. What could I possibly say in five min-

utes that could make any difference to an audience that hated what I was  

doing?

I improvised: “That fly on the food has a brain with only 100,000 neu-

rons; it weighs a milligram and consumes a milliwatt of power,” I said, 
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winging it. “The fly can see, it can fly, it can navigate, and it can find food. 

But what is truly remarkable is that it can reproduce itself. MIT owns a 

supercomputer that costs $100 million: it consumes a megawatt of power 

and is cooled by a huge air-conditioner. But the biggest cost of the super-

computer is human sacrifice in the form of programmers to feed its vora-

cious appetite for programs. That supercomputer can’t see, it can’t fly, and 

although it communicates with other computers, it can’t mate or reproduce 

itself. What is wrong with this picture?”

After a long pause, a senior faculty member spoke, “Because we haven’t 

written the vision program yet.” (The Department of Defense had recently 

poured $600 million into its Strategic Computing Initiative, a program that 

ran from 1983 to 1993 but came up short on building a vision system to 

guide a self-driving tank.)9 “Good luck with that,” was my reply.

Gerald Sussman, who made several important applications of AI to 

real-world problems, including a system for high-precision integration for 

orbital mechanics, defended the honor of MIT’s approach to AI with an 

appeal to the classic work of Alan Turing, who had proven that the Turing 

machine, a thought experiment, could compute any computable function. 

“And how long would that take?” I asked. “You had better compute quickly 

or you will be eaten,” I added, then walked across the room to pour myself 

a cup of coffee. And that was the end of the dialogue with the faculty.

Figure 2.4

Terry Sejnowski talking about scaling laws for the cortex shortly after he moved to 

the Salk Institute in 1989. Courtesy of Ciencia Explicada.
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“What is wrong with this picture?” is a question that every student in 

my lab can answer. But the first two rows of my lunchtime audience were 

stumped. Finally, a student in the third row offered this reply: “The digital 

computer is a general-purpose device, which can be programmed to com-

pute anything, though inefficiently, but the fly is a special-purpose com-

puter that can see and fly but can’t balance my checkbook.” This was the 

right answer. The vision networks in the fly eye evolved over hundreds of 

millions of years, and its vision algorithms are embedded in the networks 

themselves. This is why you can reverse engineer vision by working out the 

wiring diagram and information flow through the neural circuits of the fly 

eye, and why you can’t do that for a digital computer, where the hardware 

by itself needs software to specify what problem is being solved.

I recognized Rodney Brooks smiling in the back of the crowd, someone I 

had once invited to a workshop on computational neuroscience in Woods 

Hole on Cape Cod, Massachusetts. Brooks is from Australia, and, in the 

1980s, he was a junior faculty member in the MIT AI Lab, where he built 

walking robotic insects using an architecture that did not depend on digital 

logic. He would eventually become the lab’s director and go on to found 

iRobot, the company that makes Roombas.

The room where I gave my lecture that afternoon was huge and filled 

with a large contingent of undergraduate students, the next generation 

looking to the future rather than the past. I talked about a neural network 

that learned how to play backgammon, a project I collaborated on with 

Gerald Tesauro, a physicist at the Center for Complex Systems Research at 

the University of Illinois in Urbana-Champaign. Backgammon is a race to 

the finish between two players, with pieces that move forward based on 

each roll of the dice, passing over one another on the way. Unlike chess, 

which is deterministic, backgammon is governed by chance: the uncer-

tainty with every roll of the dice makes it more difficult to predict the out-

come of a particular move. It is a highly popular game in the Middle East, 

where some make a living playing high-stakes backgammon.

Rather than write a program based on logic and heuristics to handle 

all possible board positions, an impossible task given that there are 1020 

possible backgammon board positions, we had the network learn to play 

through pattern recognition by watching a teacher play.10 Gerry went on to 

create the first backgammon program that played at world-championship 

levels by having the backgammon network play itself (a story that will be 

told in chapter 10).

After my lecture, I learned that there was a front page article in the New 

York Times that morning about how government agencies were slashing 
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funding for artificial intelligence. Although this was the beginning of an 

AI winter for mainstream researchers, it didn’t affect me or the rest of my 

group, for whom the neural network spring had just begun.

But our new approach to AI would take twenty-five years to deliver real-

world applications in vision, speech, and language. Even in 1989, I should 

have known it would take this long. In 1978, when I was a graduate student 

at Princeton, I extrapolated Moore’s law for the exponential increase in 

computing power, doubling every 18 months, to see how long it would take 

to reach brain levels of computing power and concluded it would happen 

in 2015. Fortunately, that did not deter me from charging ahead. My belief 

in neural networks was based on my intuition that if nature had solved 

these problems, we should be able to learn from nature how to solve them, 

too. The twenty-five years I had to wait was not even a blink of the eye 

compared to the hundreds of millions of years it took nature.

Inside the visual cortex, neurons are arranged in a hierarchy of layers. As 

sensory information is transformed cortical layer by cortical layer, the repre-

sentation of the world becomes more and more abstract. Over the decades, 

as the number of layers in neural network models increased, their perfor-

mance continued to improve until finally a critical threshold was reached 

that allowed us to solve problems we could only dream about solving in the 

1980s. Deep learning automates the process of finding good features that 

distinguish different objects in an image, and that is why computer vision 

is so much better today than it was five years ago.

By 2016, computers had become a million times faster and computer 

memory had increased by a billion times from megabytes to terabytes. It 

became possible to simulate neural networks with millions of units and 

billions of connections, compared with networks in the 1980s that had 

only hundreds of units and thousands of connections. Though still tiny 

by the standards of a human brain, which has a hundred billion neurons 

and a million billion synaptic connections, today’s networks are now large 

enough to demonstrate proof of principle in narrow domains.

Deep learning in deep neural networks has arrived. But before there were 

deep networks, we had to learn how to train shallow networks.





The only existence proof that any of the hard problems in artificial  

intelligence can be solved is the fact that, through evolution, nature has 

already solved them. But there were clues in the 1950s for how computers 

might actually achieve intelligent behavior, if AI researchers would take an 

approach that was fundamentally different from symbol processing.

The first clue was that our brains are powerful pattern recognizers. Our 

visual systems can recognize an object in a cluttered scene in one-tenth of a 

second, even though we may have never seen that particular object before 

and even when the object is in any location, of any size, and in any orien-

tation to us. In short, our visual system behaves like a computer that has 

“recognize object” as a single instruction.

The second clue was that our brains can learn how to perform many 

difficult tasks through practice, from playing the piano to mastering phys-

ics. Nature uses general-purpose learning to solve specialized problems, and 

humans are champion learners. This is our special power. The organization 

of our cerebral cortex is similar throughout, and deep learning networks are 

found in all our sensory and motor systems.1

The third clue was that our brains aren’t filled with logic or rules. Yes, we 

can learn how to think logically or follow rules, but only after a lot of train-

ing, and most of us aren’t very good at it. This is illustrated by typical per-

formances on a logical puzzle called the “Wason selection task” (figure 3.1).

The correct selections are the card with “8” and the brown card. In the 

original study, only 10 percent of subjects got the right answer.2 But most 

subjects had no trouble getting the right answer when the logic test was 

grounded in a familiar context (figure 3.2).

Reasoning seems to be domain specific, and the more familiar we are 

with a domain, the easier it is for us to solve problems in that domain. 

Experience makes it easier to reason within a domain because we can use 

examples we have encountered to intuit solutions. In physics, for example, 

3 The Dawn of Neural Networks
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we learn a domain like electricity and magnetism by solving many prob-

lems, not by memorizing formulas. If human intelligence were based purely 

on logic, it should be domain general, which it isn’t.

The fourth clue is that our brains are filled with billions and billions of 

tiny neurons that are constantly communicating with one another. This 

suggests that, for solutions to the hard problems in artificial intelligence, 

we should be looking into computers with massively parallel architectures 

rather than those with von Neumann digital architectures through which 

data and instructions are fetched and executed one at a time. Yes, it is 

true that a Turing machine can compute any computable function given 

enough memory and enough time, but nature had to solve problems in real 

Figure 3.1

Each of these four cards has a number on one side and a field of color covering the 

entire other side. Which card(s) must you turn over in order to test the truth of the 

proposition that if a card shows an even number on one face, then its opposite face 

is red? (From “Wason selection task,” Wikipedia.)

Figure 3.2

Each card has an age on one side, and a drink on the other. Which card(s) must be 

turned over to test the law that, if you are drinking alcohol, then you must be over 

18? (From “Wason selection task,” Wikipedia.) 
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time. To do this, it made use of the brain’s neural networks that, like the 

most powerful computers on the planet, have massively parallel processors. 

Algorithms that run efficiently on them will eventually win out.

Early Pioneers

In the 1950s and 1960s, shortly after Norbert Wiener introduced cyber-

netics, based on communications and control systems in both machines  

and living creatures,3 there was an explosion of interest in self-organizing 

systems. As a small sample of the ingenious creations that explosion gave 

rise to, Oliver Selfridge created Pandemonium,4 a pattern recognition device 

in which feature-detecting “demons” vied with one another for the right to 

represent objects in images (a metaphor for deep learning; figure 3.3); and 

Bernard Widrow and his student Ted Hoff at Stanford invented the LMS 

(least mean squares) learning algorithm,5 which, along with its successors, 

is used extensively for adaptive signal processing in numerous applications 

from noise cancellation to financial forecasting. Here I will focus on just 

one of the pioneers of those early decades, Frank Rosenblatt (figure 3.4), 

whose perceptron is the direct antecedent of deep learning.6

Learning from Examples

Undeterred by our lack of understanding about brain function, neural net-

work AI pioneers plunged ahead with cartoon versions of neurons and how 

they are connected with one another. Frank Rosenblatt at Cornell Univer-

sity (figure 3.4) was one of the earliest to mimic the architecture of our 

visual system for automatic pattern recognition.7 He invented a deceptively 

simple network called a “perceptron,” a learning algorithm that could learn 

how to classify patterns into categories, such as letters of the alphabet. 

Algorithms are step-by-step procedures that you follow to achieve particu-

lar goals, much as you would a recipe to bake a cake (chapter 13 will explain 

algorithms in general). 

If you understand the basic principles for how a perceptron learns to 

solve a pattern recognition problem, you are halfway to understanding how 

deep learning works. The goal of a perceptron is to determine whether an 

input pattern is a member of a category, such as cats, in an image. Box 

3.1 explains how the inputs to a perceptron are transformed by a set of 

weights from the input units to the output unit. The weights are a measure 

of the influence that each input has on the final decision made by the out-

put unit. But how can we find a set of weights that can correctly classify  

inputs?
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The traditional way that an engineer solves this problem is to handcraft 

the weights based on analysis or an ad hoc procedure. This is labor inten-

sive and often depends on intuition as much as on engineering. An alterna-

tive is to use an automatic procedure that learns from examples, the same 

way that we learn about objects in the world. Many examples are needed 

including those not in the category, especially if they are similar, such as 

dogs if the goal is to recognize cats. The examples are passed to the percep-

tron one at a time and corrections are automatically made to the weights if 

there is a classification error. 

The beauty of the perceptron learning algorithm is that it is guaranteed 

to find a set of weights automatically if such a set of weights exists and 

if enough examples are available. The learning takes place incrementally 

after each of the examples in the training set is presented and the output 

compared with the correct answer. If the answer is correct, no changes are 

made to the weights, but if it isn’t correct (1 when it should be 0, or 0 when 

Figure 3.3

Pandemonium. Oliver Selfridge imagined that there were demons in the brain that 

were responsible for extracting successively more complex features and abstractions 

from sensory inputs, resulting in decisions. Each demon at each level is excited if it 

is a match to input from an earlier level. The decision demon weighs the degree of 

excitement and importance of its informants. This form of evidence evaluation is a 

metaphor for current deep learning networks, which have many more levels. From 

Peter H. Lindsay and Donald A. Norman, Human Information Processing: An Introduc-

tion to Psychology, 2nd ed. (New York: Academic Press, 1977), figure 3-1. Wikipedia 

Commons: https://commons.wikimedia.org/wiki/File:Pande.jpg.
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Figure 3.4

Frank Rosenblatt at Cornell deep in thought. He invented the perceptron, an early 

precursor of deep learning networks, which had a simple learning algorithm for clas-

sifying images into categories. Article in the New York Times, July 8, 1958, from a UPI 

wire report. The perceptron machine was expected to cost $100,000 on completion 

in 1959, or around $1 million in today’s dollars; the IBM 704 computer that cost $2 

million in 1958, or $20 million in today’s dollars, could perform 12,000 multiplies 

per second, which was blazingly fast at the time. But the much less expensive Sam-

sung Galaxy S6 phone, which can perform 34 billion operations per second, is more 

than a million times faster. Photo courtesy of George Nagy.



42 Chapter 3

Box 3.1

The Perceptron

A perceptron is a neural network with one artificial neuron that has an input 

layer and a set of connections linking the input units to the output unit. 

The goal of a perceptron is to classify patterns presented to input units. The 

basic operation performed by the output unit is to sum up the values of each 

input (xn) multiplied by its connection strength, or weight (wn), to the output 

unit. In the diagram above, a weighted sum of the inputs (Σi=1, ..., n wi xi,) is 

compared to the threshold θ and passed through a step function that gives 

an output of “1” if the sum is greater than the threshold and an output of 

“0” otherwise. For example, the input could be the intensities of pixels in 

an image, or more generally, features that are extracted from the raw image, 

such as the outline of objects in the image. Images are presented one at a 

time, and the perceptron decides whether or not the image is a member of a 

category, such as the category of cats. The output can only be in one of two 

states, “on” if the image is in the category or “off” if it isn’t. “On” and “off” 

correspond to the binary values 1 and 0, respectively. The perceptron learn-

ing algorithm is

δ wi = α δ xi

δ = output—teacher,

where both the output and teacher are binary, so that δ = 0 if the output  

is correct , and δ = +1 or -1 If the output is not correct, depending on the 

difference.
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it should be 1), then the weights are changed slightly so that the next time 

the same input is given, it is closer to getting the correct answer (box 3.1). 

It is important that the changes occur gradually so that the weights can 

feel the tugs from all the training examples, and not just from the last one.

If this explanation of perceptron learning isn’t clear, there is a much 

neater geometric way to understand how a perceptron learns to classify 

inputs. For the special case of two inputs, it is possible to plot the inputs 

on a two-dimensional graph. Each input is a point in the graph and the 

two weights in the network determine a straight line. The goal of learn-

ing is to move the line around so that it cleanly separates the positive and 

negative examples (figure 3.5). For three inputs, the space of inputs is three-

dimensional, and the perceptron specifies a plane that separates the posi-

tive and negative training examples. The same principle holds even in the 

general case, when the dimensionality of the space of inputs can be quite 

high and impossible to visualize.

Eventually, if a solution is possible, the weights will stop changing, 

which means the perceptron has correctly classified all of the examples 

in the training set. But, in what is called “overfitting,” it is also possible 

that there are not enough examples in the set, and the network has simply 

memorized the specific examples without being able to generalize to new 

ones. To avoid overfitting, it is important to have another set of examples, 

Figure 3.5

Geometric explanation for how two object categories are discriminated by a percep-

tron. The objects have two features, such as size and brightness, which have values 

(x,y) and are plotted on each graph. The two types of objects (pluses and squares) in 

the panel on the left can be separated by a straight line that passes between them; 

this discrimination can be learned by a perceptron. The two types of objects in the 

other two panels cannot be separated by a straight line, but those in the center panel 

can be separated by a curved line. The objects in the panel on the right would have to 

be gerrymandered to separate the two types. The discriminations in all three panels 

could be learned by a deep learning network if enough training data were available.
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called a “test set,” that wasn’t used to train the network. At the end of 

training, the classification performance on the test set is a true measure of 

how well the perceptron can generalize to new examples whose respective 

categories are unknown. Generalization is the key concept here. In real life, 

we never see the same object the same way or encounter the same situation, 

but if we can generalize from previous experience to new views or situa-

tions, we can handle a broad range of real-world problems.

SEXNET

As an example of how a perceptron can be used to solve a real-world prob-

lem, consider how you would tell a male from a female face, taking away 

hair, jewelry, and secondary sexual characteristics such as Adam’s apples, 

which tend to be larger in males. Beatrice Golomb, a postdoctoral fellow in 

my lab in 1990, used faces of college students from a database she obtained 

as inputs to a perceptron that was trained to classify the sex of a face with 

an 81 percent accuracy (figure 3.6).8 The faces that the perceptron had dif-

ficulty classifying were also difficult for humans to classify, and members 

of my lab achieved an average performance of 88 percent on the same set 

of faces. Beatrice also trained a multilayer perceptron (which will be intro-

duced in chapter 8) that achieved a 92 percent accuracy,9 better than people 

from my lab. At a talk she gave at the 1991 Neural Information Processing 

Systems (NIPS) Conference, she concluded: “Since experience improves 

performance, this should suggest that people in the lab need to spend more 

time engaged in discriminating sex.” She called her multilayer perceptron 

the “SEXNET.” In the question-and-answer period, someone asked whether 

SEXNET could be used to detect transvestite faces. “Yes,” said Beatrice, to 

which Ed Posner, the founder of the NIPS conferences, retorted, “That 

would be the DRAGNET.”10

Figure 3.6

What is the sex of this face—male or female? A perceptron was trained to discrimi-

nate male from female faces. The pixels from the image of a face (top) are multiplied 

by the corresponding weights (bottom), and the sum is compared to a threshold. The 

size of each weight is depicted as the area of the pixel. Positive weights (white) are ev-

idence for maleness and negative weights (black) favor femaleness. The nose width, 

the size of the region between the nose and mouth, and image intensity around the 

eye region are important for discriminating males, whereas image intensity around 

the mouth and cheekbone is important for discriminating females. From M. S. Gray, 

D. T. Lawrence, B. A. Golomb, and T. J. Sejnowski, “A Perceptron Reveals the Face of 

Sex,” Neural Computation 7 (1995): 1160–1164, figure 1.
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What makes discriminating male from female faces an interesting task 

is that, although we are quite good at it, we can’t articulate exactly what 

the differences between male and female faces are. Since no single feature 

is definitive, this pattern recognition problem depends on combining evi-

dence from a large number of low-level features. The advantage of the per-

ceptron is that the weights provide clues to which parts of the face are 

the most informative about sex (figure 3.6). Surprisingly, the philtrum (the 

space between the nose and lips) was the most distinctive feature, which is 

noticeably larger in most males. Regions around the eyes (larger in males) 

and upper cheeks (larger in females) also had high informational value for 

classifying sex. The perceptron weighs evidence from all these locations to 

make a decision, and so do we although we might not be able to describe 

how we do it.

Rosenblatt’s proof of the “perceptron convergence theorem” in 1957 was 

a breakthrough, and his demonstrations were impressive. Backed by the 

Office of Naval Research, he built a custom-hardware analog computer with 

400 photocells as input, with weights that were variable resistance poten-

tiometers adjusted by motors. Analog signals vary continuously with time, 

just like the signals from vinyl phonograph records. Given a collection of 

pictures with and without tanks in them, Rosenblatt’s perceptron learned 

how to recognize tanks even in new images. This was written up in the New 

York Times and caused a sensation (figure 3.4).11

The perceptron inspired a beautiful mathematical analysis of pattern 

separation in high-dimensional spaces. When points live in a space that 

has thousands of dimensions. we cannot rely on our intuition about dis-

tances between points in the three-dimensional space we live in. The Rus-

sian mathematician Vladimir Vapnik introduced a classifier based on this 

analysis, called the “Support Vector Machine,”12 which generalized the 

perceptron and is widely used in machine learning. He found a way to 

automatically find a flat surface that maximally separates points from the 

two categories (figure 3.5, linear). This makes generalization more robust to 

measurement error of the points in the space, and, when coupled with the 

“kernel trick,” which is a nonlinear extension, the Support Vector Machine 

algorithm has become a mainstay in machine learning.13

Perceptrons Eclipsed

But there was a limitation that made the perceptron line of research prob-

lematic. The caveat above, “if such a set of weights exists,” raised the 

question of what problems can and cannot be solved by perceptrons. 
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Embarrassingly simple distributions of points in two dimensions cannot be 

separated by a perceptron (figure 3.5, nonlinear). It turned out that the tank 

perceptron was not a tank classifier, but a time of day classifier. It is much 

more difficult to classify tanks in images; indeed, it cannot be done with 

a perceptron. This also shows that, even when a perceptron has learned 

something, it may not be what you think it has learned. The final blow 

to the perceptron was a 1969 tour de force mathematical treatise, Percep-

trons by Marvin Minsky and Seymour Papert.14 Their definitive geometric 

analysis showed that the capabilities of perceptrons are limited: they can 

only separate categories that are linearly separable (figure 3.5). The cover of 

their book illustrates a geometric problem that Minsky and Papert proved 

the perceptron could not solve (figure 3.7). Although, at the end of their 

book, Minsky and Papert considered the prospect of generalizing single- to 

multiple-layer perceptrons, one layer feeding into the next, they doubted 

there would ever be a way to train even these more powerful perceptrons. 

Unfortunately, many took this doubt to be definitive, and the field was 

abandoned until a new generation of neural network researchers took a 

fresh look at the problem in the 1980s.

In a perceptron, each input contributes independent evidence to the 

output unit. But what if several inputs need to be combined in ways that 

make decisions dependent on the combination and not on each input 

separately? This is why a perceptron cannot distinguish whether a spiral 

is connected or not: a single pixel carries no information on whether it 

is on the inside or the outside. Although in multilayer feedforward net-

works, combinations of several inputs can be formed in intermediate layers 

between the input and output units, no one in the 1960s knew how to 

train a network with even a single layer of such “hidden units” between 

the input and output layers.

Frank Rosenblatt and Marvin Minsky had been classmates at the Bronx 

High School of Science in New York City. They debated their radically dif-

ferent approaches to artificial intelligence at scientific meetings, where 

participants tilted toward Minsky’s approach. But despite their differences, 

each man made important contributions to our understanding of percep-

trons, which is the starting point for deep learning.

When Rosenblatt died in a boating accident in 1971 at age 43, the back-

lash against perceptrons was in full swing, and there were rumors that  

he might have committed suicide, or was it an outing gone tragically 

wrong?15 What became clear was that a heroic period of discovering a new 

way of computing with neural networks was closing; a generation would 

pass before the promise of Rosenblatt’s pioneering efforts was realized.
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Figure 3.7

The book cover of an expanded edition of Perceptrons. The two red spirals look the 

same but they aren’t. The top one is two disconnected spirals, but the bottom one is a 

single connected spiral, which you can verify by tracing the insides of the loops with 

a pencil. Minsky and Papert proved that a perceptron cannot distinguish between 

these two objects. Can you see the difference without tracing? Why not?



“If I Only Had a Brain” was a song sung by the Scarecrow in the classic 

1939 musical film The Wizard of Oz. What the Scarecrow did not know was 

that he already had a brain and could hardly have talked or sung without 

one, but the brain was only two days old, and his real problem was a lack 

of experience. With time, he learned about the world and was eventually 

recognized as the wisest man in all of Oz, wise enough to know his own 

limitations. In contrast, the Tin Woodman sang “If I Only Had a Heart.” He 

and the Scarecrow debated which was more important, having a brain or 

having a heart. In Oz, as well as in the real world, cognition and emotion, 

both products of the brain, work together in a delicate balancing act with 

learning to create human intelligence. Drawing on this classic musical, the 

theme of this chapter is “If AI Only Had a Brain and a Heart.”

How the Brain Works

Geoffrey Hinton (figure 4.1) and I had similar beliefs about the promise 

of neural network models when we met at a workshop that Geoffrey orga-

nized in 1979. We became fast friends and later collaborated on the discov-

ery of a new type of neural network model called the “Boltzmann machine” 

(discussed in chapter 7), which would break a logjam that had been holding 

back learning in multilayer network models for a generation.

Every few years, I get a call from Geoffrey that begins with “I figured out 

how the brain works.” Each time, he tells me about a clever new scheme 

for improving neural network models. It has taken many such schemes and 

refinements for deep learning in multilayered neural networks to achieve a 

level of performance comparable to humans in recognizing speech on cell 

phones and objects in photos. The public became aware of these capabili-

ties just a few years ago; they are now well known, but they were a long 

time in coming.

4 Brain-style Computing
Chapter 4
Brain-style Computing

© Massachusetts Institute of TechnologyAll Rights Reserved



50 Chapter 4

Geoffrey received an undergraduate degree in psychology at the Univer-

sity of Cambridge and a doctorate in artificial intelligence from the Uni-

versity of Edinburgh. His thesis advisor was Christopher Longuet-Higgins, 

a distinguished chemist who invented an early network model of an asso-

ciative memory. At that time, the dominant paradigm in artificial intel-

ligence was based on writing programs that used symbols, logic, and rules 

to codify intelligent behavior; cognitive psychologists had adopted this 

approach to understanding human cognition, and especially language. 

Geoffrey was swimming against the tide. No one could have predicted that 

he would someday figure out how the brain—or at least something like 

the brain—works. His lectures are compelling, and he can explain abstract 

Figure 4.1

(A) Geoffrey Everest Hinton early in his career. His middle name comes from a rela-

tive, George Everest, who surveyed India and figured out how to measure the height 

of the world’s tallest mountain, which now bears his name. (B) Hinton in 1994. 

These two photos were taken fifteen years apart. Courtesy of Geoffrey Hinton.
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mathematical concepts with a clarity that requires little math to grasp. His 

wit and self-effacing humor are charming. Geoffrey is also by nature highly 

competitive, especially when it comes to the brain.

When we first met, Geoffrey was a postdoctoral fellow at the University 

of California, San Diego (UCSD), in the Parallel Distributed Processing (PDP) 

Group led by David Rumelhart and James McClelland. Geoffrey believed 

that networks of simple processing units, working together in parallel and 

learning from examples, were a better way to understand cognition. He was 

a central figure in the PDP Group, which was exploring how words and lan-

guage could be understood as the spread of activity distributed over a large 

number of nodes in a network.

The traditional approach to language in cognitive science is based on 

symbolic representations. The word “cup,” for example, is a symbol that 

stands for the concept of a cup, and not just any cup, but all cups. The 

beauty of symbols is that they allow us to compress complex ideas and 

manipulate them; the problem with symbols is that they are so compressed 

that it is difficult to ground them in the real world, where cups come in 

an infinite variety of forms, shapes, and sizes. There is no logical program 

that can specify what is and what is not a cup or that can recognize cups 

in images, even though most of us humans are quite good at knowing a 

cup when we see it. Abstract concepts like justice and peace are even more 

difficult for a logical program to pin down. An alternative is to represent 

cups by activity patterns over a very large population of neurons, which 

can capture both the similarities and differences between concepts. This 

endows a symbol with a rich internal structure that reflects its meaning. 

The problem was that no one in 1980 knew how to create these internal  

representations.

Geoffrey and I were not the only ones who believed in the potential of 

network models to mimic intelligent behavior in the 1980s. A number of 

researchers around the world, most of them toiling in isolation, shared our 

belief and went on to develop specialized network models. Christoph von 

der Malsburg, for one, developed a model of pattern recognition based on 

linking together artificial neurons that fired spikes1 and later demonstrated 

that this approach could recognize faces in images.2 Kunihiko Fukushima at 

Osaka University, for another, invented the Neocognitron,3 a multilayered 

network model based on the architecture of the visual system that used con-

volutional filters and a simple form of Hebbian plasticity and was a direct 

precursor of deep learning networks. And, for a third, Teuvo Kohonen, an 

electrical engineer at Helsinki University, developed a self-organizing net-

work that could learn to cluster similar inputs into a two-dimensional map, 
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representing different speech sounds, for example, by different processing 

units in the map, with similar inputs activating neighboring regions of the 

output space.4 A major advantage of the Kohonen network model was that 

it did not require a category label for each input (generating labels to train 

supervised networks is expensive). Kohonen had only one arrow in his 

quiver, but it was a very fine arrow.

In a promising early attempt to systematize probabilistic networks, Judea 

Pearl at the University of California, Los Angeles (UCLA), introduced belief 

networks that linked the items in the network with probabilities, such as 

the probabilities that the grass is wet because the sprinkler came on or 

because it rained.5 Although Pearl’s network model was a powerful frame-

work for keeping track of cause and effect in the world, manually assigning 

all of the required probabilities proved impracticable. A breakthrough was 

needed for automatically finding the probabilities with learning algorithms 

(as will be discussed in part II).

These and other network-based models all had one fatal flaw in com-

mon: none of them worked well enough to solve problems in the real 

world. Moreover, the pioneers who developed them rarely collaborated 

with one another, making it even more difficult to make progress. As a 

consequence, very few in the leading AI research centers at MIT, Stanford, 

and Carnegie Mellon took neural networks seriously. Rule-based symbol 

processing received most of the funding—and generated most of the jobs.

Early Pioneers

In 1979, Geoffrey Hinton and James Anderson, a psychologist at Brown 

University, organized the Parallel Models of Associative Memory workshop 

in La Jolla, California.6 Most participants were meeting one another for 

the first time. As a postdoctoral fellow of neurobiology at Harvard Medi-

cal School who had written only a few highly technical papers on neural 

networks published in obscure journals, I was surprised to be invited to the 

workshop. Geoffrey later told me that he had vetted me with David Marr 

(figure 4.2, middle), a towering figure in neural network modeling and a 

leading visionary at the MIT AI Lab. I first met Marr in a small workshop at 

Jackson Hole, Wyoming, in 1976. We had similar interests and he invited 

me to visit him and give a talk at MIT.

Marr received a bachelor’s degree in mathematics and his doctorate 

in physiology from Cambridge University. His doctoral advisor was Giles 

Brindley, a physiologist who specialized on the retina and color vision but 

also was known for his work on musicology and the treatment of erectile 
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dysfunction. He famously dropped his pants during a lecture at a meeting 

of the American Urological Association in Las Vegas, Nevada, to demon-

strate the effectiveness of a chemically-induced erection. Marr’s doctoral 

dissertation described a neural network model of learning in the cerebel-

lum, a part of the brain that is involved with fast motor control. He also 

developed neural network models of the hippocampus and the cerebral cor-

tex, described in dense papers that have proven to be prescient.7

When I first met Marr at Jackson Hole, he had already moved to MIT, 

where he was working on vision and where, as a charismatic figure, he had 

attracted talented students to work with him. Pursuing a bottom-up strat-

egy, he started at the retina, where light is converted to electrical signals, 

and asked how signals in the retina encoded the features of objects and 

how the visual cortex represented the surfaces and boundaries of objects. 

He and Tomaso Poggio (figure 4.2, left) developed an ingenious recurrent 

neural network model for stereo vision with feedback connections to detect 

the depth of an object from the slight lateral displacements of the images of 

dots in the two eyes in random-dot stereograms.8 Binocular depth percep-

tion is the basis for how Magic Eye images pop out at you.9

Two years after Marr died of leukemia in 1980 at the age of 35, the book 

he was working on at the time, Vision, was published posthumously.10 Iron-

ically, despite the bottom-up approach Marr took to his research on vision, 

starting with the retina and modeling each succeeding stage of visual proc-

essing, his book is best known for advocating a top-down strategy, starting 

with a computational analysis of the problem to be solved, followed by 

Figure 4.2

(Left to right) Tomaso Poggio, David Marr, and Francis Crick hiking in California  

in 1974. Francis enjoyed long discussions with visitors on many scientific issues. 

Courtesy of The Salk Institute for Biological Studies.
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building an algorithm to solve the problem, and finally by implementing 

the algorithm in hardware. But, even though this may be a good way to 

explain things after you have figured them out, it isn’t such a good way 

to discover what’s going on in the brain. The difficulty is in the first step, 

in deciding on what problem the brain is solving. Our intuition is often 

misleading, particularly when it comes to vision; we are exceptionally good 

at seeing, but the brain hides all the details from us. As a consequence, a 

pure top-down strategy is flawed, but so is a pure bottom up strategy. (Later 

chapters will explore how progress was made in understanding vision work-

ing from the inside out with learning algorithms.)

Also attending Hinton and Anderson’s workshop in La Jolla was Francis 

Crick (figure 4.2, right), who with James Watson at Cambridge University 

had discovered the structure of DNA in 1953. Decades after his discovery, in 

1977, Crick had moved to the Salk Institute for Biological Studies in La Jolla 

and shifted his research focus to neuroscience. He would invite researchers 

to visit him and have a long discussion on many topics in neuroscience, 

especially on vision, and David Marr was one of those visitors. At the end 

of Marr’s book, there is a revealing discussion in the form of a Socratic 

dialogue, a dialogue I later learned had arisen from Marr’s discussions with 

Crick. On moving to the Salk Institute in 1989, I, too, came to appreciate 

the value of having a dialogue with Crick.

George Boole and Machine Learning

In 1854, a self-taught British schoolteacher who had five daughters, some of 

whom were mathematically inclined, wrote a book entitled An Investigation 

of the Laws of Thought, which was the mathematical foundation for what is 

now called “Boolean logic.” George Boole’s insights into how to manipulate 

logical expressions are at the heart of digital computing and were a natu-

ral starting point for fledgling efforts in artificial intelligence in the 1950s. 

Geoffrey Hinton, who happens to be Boole’s great-great-grandson, is proud 

to have a pen once used by Boole and handed down in his family.

In preparing a talk, I discovered that the full title of Boole’s famous 

book is An Investigation of the Laws of Thought, on Which Are Founded the 

Mathematical Theories of Logic and Probabilities (figure 4.3). Although best 

remembered for its insights into logic, Investigation also has much to say 

about probability theory, which is at the heart of modern machine learning 

and can describe the uncertainties in the real world far better than logic. 

So Boole is also one of the fathers of machine learning. What an irony that 

a forgotten side of his thinking should flower 250 years later through his 

great-great-grandson. Boole would have been proud of him.
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The Humpty Dumpty Project

As a graduate student in the Physics Department at Princeton, I approached 

the problem of understanding the brain by writing down equations for net-

works of nonlinearly interacting neurons and by analyzing them,11 much 

as physicists have over the centuries used mathematics to understand the 

nature of gravity, light, electricity, magnetism, and nuclear forces. Every 

night before bed, I would pray: “Dear Lord, let the equations be linear, the 

noise be Gaussian, and the variables be separable.” These are the condi-

tions that lead to analytic solutions, but because neural network equations 

turn out to be nonlinear, the noise associated with them non-Gaussian, and 

the variables nonseparable, they do not have explicit solutions. Moreover, 

simulating the equations on computers at that time was impossibly slow 

for large networks; even more discouraging, I had no idea whether I had 

the right equations.

Figure 4.3

Although The Laws of Thought by George Boole is famous for investigating logic as a 

basis for thinking, note that it is also about probabilities. These two areas of math-

ematics inspired symbol processing and machine learning approaches to artificial 

intelligence, respectively. 
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Taking courses at Princeton, I discovered that exciting progress was being 

made by neuroscientists, whose relatively young science was founded forty-

five years ago. Before that, research on the brain was carried out in many 

disciplines: biology, psychology, anatomy, physiology, pharmacology, neu-

rology, psychiatry, bioengineering, and many others. At the first meeting 

of the Society for Neuroscience in 1971, Vernon Mountcastle personally 

greeted everyone at the door.12 Today there are over 40,000 members of the 

society, and 30,000 show up at the annual meeting. I met this legendary 

neurophysiologist, who had discovered the cortical column and who had a 

formidable personality, at the Johns Hopkins University when I moved to 

the Department of Biophysics there for my first job in 1982.13 I would work 

closely with Mountcastle in planning the Mind/Brain Institute at Johns 

Hopkins, the first institute of its kind in the world, established in 1994.

There are many different levels of investigation in the brain (figure 4.4), 

and important discoveries have been made at each of them; integrating all 

that knowledge is a formidable problem. This is reminiscent of the Humpty 

Dumpty nursery rhyme:

Humpty Dumpty sat on a wall,

Humpty Dumpty had a great fall.

All the king’s horses and all the king’s men

Couldn’t put Humpty together again.

Although neuroscientists are very good at taking the brain apart, putting 

the pieces together poses a more difficult problem, one that requires syn-

thesis rather than reduction, which is what I wanted to do. But first I had to 

know what the parts are, and the brain has lots of parts.

In a graduate seminar taught by Charles Gross, a psychologist who 

studied the monkey visual system at Princeton, I was impressed with the 

progress that had been made by David Hubel and Torsten Wiesel at Har-

vard Medical School in recording from single neurons in the visual cortex. 

If physics wasn’t the royal road to understanding how the brain works, 

maybe neuroscience would be. For their pioneering work in the primary 

visual cortex, Hubel and Wiesel would receive a Nobel Prize in Physiology 

or Medicine in 1981. (Their discoveries, discussed in chapter 5, are the basis 

for deep learning, the subject of chapter 9.) 

What I learned at Woods Hole

After finishing my doctorate in physics at Princeton in 1978, I attended a 

ten-week, in-depth summer course on experimental neurobiology at the 
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Figure 4.4

Levels of investigation in the brain. (Left) The spatial scale ranges from the molecular 

level at the bottom to the entire central nervous systems (CNS) at the top. Much 

is known about each of these levels, but the least understood is the network level 

with its small groups of highly interconnected neurons—the level modeled by artifi-

cial neural networks. (Right) Icons for synapse (bottom), simple cell in visual cortex 

(middle), and hierarchy of cortical areas in the visual cortex (top). Adapted from P. S. 

Churchland, and T. J. Sejnowski, “Perspectives on Cognitive Neuroscience,” Science, 

242 (1988): 741–745, figure 1.
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Marine Biological Laboratory at Woods Hole. I arrived on the first day of the 

course in a casual blue sports coat and neatly pressed khaki pants, only to 

be taken aside by Story Landis, one of the course instructors, who bought 

me my first pair of jeans. Story was on the faculty in the Harvard Depart-

ment of Neurobiology at the time and went on to become the director of 

the National Institute for Neurological Disorders and Stroke at the National 

Institutes of Health. She still reminds me of this incident.

After the summer course, I stayed on for a few weeks in September to 

wrap up a project I had started. Sharks and rays (which include skates) are 

able to sense very weak electrical fields; indeed, they can detect the sig-

nal from a 1.5-volt battery clear across the Atlantic Ocean. With this sixth 

sense, skates can navigate by the weak electrical signals from their motion 

through the earth’s magnetic field, which generates microvolt signals in 

their electroreceptors. My project yielded spectacular electron microscope 

images of the skate electroreceptor.14

I was taking photos in the basement of Loeb Hall at Woods Hole when 

I received an unexpected call from Stephen Kuffler, who founded the  

Neurobiology Department at Harvard Medical School. Kuffler is a legend 

in neuroscience, and getting an offer to work with him as a postdoctoral 

fellow in his lab was life changing. I moved to Boston after finishing a brief 

postdoctoral fellowship with Alan Gelperin on mapping metabolic activity 

in the pedal ganglion of the garden slug Limax maximus.15 I will never be 

able to eat a snail again without thinking about its brain. Alan descended 

intellectually from a line of neuroethologists, who study the neural basis 

of animal behavior. What I learned was that the so-called simpler nervous 

systems in invertebrates were actually more complex than those in organ-

isms higher up the evolutionary ladder since invertebrates had to survive 

with many fewer neurons, each of which was highly specialized. I also came 

to understand that nothing in neuroscience makes any sense except in the 

light of behavior.16

In Kuffler’s lab, I studied a late slow excitatory response at a synapse in 

the bullfrog sympathetic ganglion (figure 4.5) that was 60,000 times slower 

than the fast millisecond excitatory response at another synapse on the 

same neuron.17 These ganglia contain the neurons that form the output 

of the bullfrog’s autonomic nervous system, which regulates glands and 

internal organs. After stimulating the nerve to the synapse, I could walk to 

the coffeepot and back before the synaptic input to the neuron had reached 

a peak, which it would in around 1 minute, taking 10 minutes to recover. 

Synapses are the fundamental computational elements in the brain, and 

the diversity of synapse types is telling. This experience taught me that 
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Figure 4.5

Bullfrog sympathetic ganglion cell. As neurons, these cells receive inputs from the 

spinal cord and innervate glands in the skin of bullfrogs. They are large and their 

electrical signals are easy to record with a microelectrode (bottom). They have no 

dendrites and can be electrically stimulated by a nerve (top, background) or with 

chemicals (top, pair of micropipettes). Stimulating the nerve elicits three different 

synaptic signals: a fast millisecond excitatory response, similar to that at the neuro-

muscular junction; a slower excitatory response that peaks in 10 seconds and lasts 1 

minute; and a late slow excitatory response that peaks in 1 minute and last 10 min-

utes. This illustrates the broad range of times scales that are present in even the sim-

plest neurons. From S. W. Kuffler, and T. J. Sejnowski, “Peptidergic and Muscarinic 

Excitation at Amphibian Sympathetic Synapses,” Journal of Physiology 341 (1983): 

257–278, plate I.
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Figure 4.6

Terry Sejnowski and Geoffrey Hinton discussing network models of vision in Boston 

in 1980. This was one year after Geoffrey and I met at the Parallel Models of Asso-

ciative Memory workshop in La Jolla and one year before I started my lab at Johns 

Hopkins in Baltimore and Geoffrey started his research group at Carnegie Mellon in 

Pittsburgh. Courtesy of Geoffrey Hinton.

complexity might not be the royal road to understanding brain function. 

To understand the brain, I had to understand how, through evolution, 

nature had solved a large collection of problems long ago and passed those 

solutions on from species to species up the evolutionary ladder. We have 

ion channels in our brains that first evolved in bacteria billions of years ago.

The Missing Link

But if physics was too simple and biology too complex, where should I 

look for guidance? Unlike forces in physics, brain circuits have a purpose, 

which is to solve computational problems, like seeing and moving around, 

in order to survive in the world. Even a perfect physical model of how a 

neuron worked wouldn’t tell us what its purpose was. Neurons are in the 

business of processing signals that carry information, and computation was 
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the missing link in trying to understand nature. I have over the last forty 

years been pursuing this goal, pioneering a new field called “computational 

neuroscience.”

After his stint as a postdoctoral fellow at UCSD, Geoffrey Hinton returned 

to England, where he had a research position with the Applied Psychology 

Unit of the Medical Research Council (MRC) at Cambridge. One day in 

1981, he received a call at 2:00 a.m. from someone who introduced him-

self as Charles Smith, president of the System Development Foundation 

in Palo Alto, California.18 Smith said that his foundation wanted to fund 

potentially promising but risky research that was unlikely to succeed and 

Geoffrey had been highly recommended to him. Geoffrey wasn’t sure that 

this was for real. Good friend that he is, Geoffrey mentioned my research to 

Smith, telling him it was even more unlikely to succeed than his.

The foundation was indeed real and provided us with our first grants, 

which greatly speeded up our research. We could now afford to buy faster 

computers and to pay the students working with us. Geoffrey replaced his 

Apple II with a fancy Lisp machine19 when he moved to Carnegie Mellon in 

Pittsburgh; I briefly had more computer power than the entire Computer 

Science Department when I moved to Johns Hopkins in Baltimore.20 I was 

also able to buy the first modem that linked Hopkins to the ARPANET, a 

precursor to the Internet, so that Geoffrey and I could e-mail each other. 

We could not have asked for a better start to our careers as we set off in new 

directions (figure 4.6). I was fortunate to be funded over the years by the 

Office of Naval Research, which also supported Frank Rosenblatt and many 

other neural network researchers.





One of my earliest memories, before going to kindergarten, was peering 

over pieces of a jigsaw puzzle and matching them using shape, color, and 

context as cues. My parents would amaze their friends at parties by how 

quickly their toddler son could put jigsaw puzzles together. I did not know 

it then, but my brain was doing what brains do best—solving problems 

with pattern recognition. Science is filled with problems that are like puz-

zles with missing pieces and vague hints to the underlying picture. How 

brains solve problems is the ultimate puzzle.

The Helmholtz Club was a small cadre of vision scientists in Southern 

California from the San Diego, Los Angeles, and Irvine campuses of the 

University of California, Caltech, and the University of Southern Califor-

nia, who would meet each month in the afternoon on the Irvine campus.1 

Hermann von Helmholtz was a nineteenth-century physicist and physician 

who developed a mathematical theory and an experimental approach to 

vision that forms the basis for our current understanding of visual percep-

tion. As the club’s secretary, it fell to me to recruit an outside speaker to 

give a talk to some fifteen to twenty members and their guests. This would 

be followed by a second talk by a club member. The talks were interac-

tive, with ample time for in-depth discussion. One of the outside speakers 

expressed his surprise at those asking questions: “They actually wanted to 

know the answers.” Intellectual high points for all who attended them, 

these monthly meetings were master classes in vision.2

Vision is our most acute and also our most studied sense. With two fron-

tal eyes, we have exquisite binocular depth perception, and half of our cor-

tex is visual. The special status of vision is captured by the saying “Seeing 

is believing.” Ironically, that we can see so well has blinded us to the enor-

mous computational complexity of the vision problem, solved by nature 

over hundreds of millions of year of evolution (as noted in chapter 2). The 

organization of the visual cortex has served as the inspiration for the most 

successful deep learning networks.

5 Insights from the Visual System
Chapter 5
Insights from the Visual System
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In one-tenth of a second, ten billion neurons in our visual cortex work-

ing together in parallel can identify a cup in a cluttered scene, even though 

we may never have seen that particular cup before and even when it might 

be in any location, of any size, and in any orientation to us. As a graduate 

student at Princeton, I was fascinated by vision and worked for a summer 

in the laboratory of Charles Gross, who studied the inferotemporal cortex 

of monkeys (figure 5.1), where he had discovered neurons that respond to 

complex objects like faces and, famously, toilet brushes.3

While at the Department of Neurobiology of the Harvard Medical 

School, I worked with Stephen Kuffler, who had earlier discovered how the 

ganglion cells in the retina encode visual scenes, and who probably would 

Figure 5.1

Schematic of the flow of information through the visual system of a macaque mon-

key. The arrows indicate projections between visual areas starting at the retina, with 

delays in milliseconds in the arrival of visual information occurring at each stage of 

visual processing. Visual perception in the macaque is similar to ours and we have 

the same stages of visual processing. LGN: lateral geniculate nucleus; V1: primary 

visual cortex; V2: secondary visual cortex; V4: visual area 4; AIT and PIT: anterior 

and posterior inferotemporal cortex; PFC: prefrontal cortex; PMC: premotor cortex; 

MC: motor cortex. From S. J. Thorpe and M. Fabre-Thorpe, “Seeking Categories in the 

Brain,” Science 291, no. 5502 (2001): 261.
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have received the Nobel Prize in Physiology or Medicine with David Hubel 

and Torsten Wiesel in 1981 for his discoveries in the retina, had he not 

died the year before. After moving to the Salk Institute in 1989, I would 

work with Francis Crick, who had shifted his research focus from molecular 

genetics to neuroscience in 1977 and was intent on finding the neural cor-

relates of visual awareness. It was thus my privilege to be in the company of 

some of the greatest vision scientists of that time.

Vision from the Bottom Up

If we follow the signals generated by an image into the brain, we can see 

how it is transformed over and over again as it passes from one stage of 

processing to the next (figure 5.1). Vision starts in the retina, where photo-

receptors convert light into electrical signals. There are two layers of neu-

rons within the retina that process the visual signals in space and time, 

ending with the ganglion cells that project out into the optic nerves.

In a classic 1953 experiment whose results hold for all mammals, Ste-

phen Kuffler (figure 5.2, left) recorded from the output neurons of the ret-

ina of a living cat while stimulating them to fire spikes in response to spots 

of light. He reported that some output neurons responded to a spot of light 

in their center when it went on, and others responded to a spot of light in 

their center when it went off. But, just outside the centers, the surrounding 

annulus had the opposite polarity: on-centers with off-surrounds and off-

centers with on-surrounds (figure 5.3). The responses of ganglion cells to 

patterns of light are called “receptive field” properties.

I once asked Kuffler, whose main scientific interest was in the properties 

of synapses between neurons, what motivated him to study the retina. He 

said that since his lab at Johns Hopkins was in the Wilmer Eye Institute at 

the time, he felt guilty he was not working on eyes. Having pioneered the 

study of single ganglion cells in the retina, he handed off the project to two 

postdoctoral fellows in his lab, David Hubel and Torsten Wiesel (figure 5.2, 

right and center), and advised them to follow the signals into the brain. 

In 1966, Kuffler and his postdoctoral fellows moved to Harvard Medical 

School to start a new Department of Neurobiology.

Vision in the Cerebral Cortex

Hubel and Wiesel discovered that cortical neurons responded much bet-

ter to oriented bars of light and contrast edges than to spots of light. The 

circuits in the cortex had transformed the input signals. They described 
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two principal types of cells: the oriented simple cell, which had on- and 

off- regions like the ganglion cells (figure 5.4), and the oriented complex 

cell that responded uniformly to oriented stimuli anywhere in the receptive 

field of the neuron (figure 5.5).

Each cortical neuron in the visual cortex can be thought of as a visual 

feature detector, which only becomes active when it receives inputs above 

a certain threshold for its preferred feature in a particular patch of the 

visual field. The feature each neuron prefers is determined by its connectiv-

ity with other neurons. The neocortex of mammals has six specialized lay-

ers. Hubel and Wiesel also discovered that the inputs from the two eyes are 

organized in alternating left, right columns in the middle layer (4) of the 

cortex, to which inputs originating from a relay station in the thalamus 

project. Monocular neurons in layer 4 project to neurons in the upper lay-

ers (2 and 3) that receive binocular inputs, which in turn project upstream 

to other cortical areas and downstream to the bottom layers (5 and 6) that 

Figure 5.2

(Left to right) Stephen Kuffler, Torsten Wiesel, and David Hubel. The Department 

of Neurobiology at Harvard Medical School was founded in 1966, and this photo is 

from the early years. I never saw any of them wearing a tie in the lab on a workday so 

this must have been a special occasion. Courtesy of Harvard Medical School.
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project subcortically. The preferred orientation and ocular preference of 

every cell in a column is the same and varies smoothly across the cortex 

(figure 5.6).

Synapse Plasticity

If one eye of a cat is closed during the first few months of its life, cor-

tical neurons that normally would be driven by both eyes become mon-

ocular, exclusively driven by the open eye.4 Monocular deprivation drives 

changes in the strengths of synapses in the primary cortex, where inputs 

to neurons receive converging inputs from the two eyes for the first time. 

After the critical period of cortical plasticity in the primary visual cortex is 

over, the closed eye can no longer influence cortical neurons, resulting in 

a condition called “amblyopia.” Although, uncorrected, misalignment or 

“strabismus,” which is common in babies, will greatly reduce the number 

of cortical neurons that are binocular and preclude binocular depth percep-

tion,5 a timely operation to align the eyes within the critical period can 

rescue binocular neurons.

Monocular deprivation is an example of the high degree of plasticity 

that is present during the early stages of development as the environment 

molds synaptic connections between neurons in the cortex and other parts 

of the brain. These activity-dependent changes ride on top of the continual 

Figure 5.3

Response properties of ganglion cells in the retina. These two donuts represent the 

responses of two types ganglion cells in the retina that send coded messages to the 

brain so you can see. For the on-center type, a spot of light in the center coming on 

(+) and a spot of light in the annulus around the center going off (–) produce a burst 

of spikes. The opposite holds for the off-center type, in which a spot of light in the 

center going off (–) and a spot of light in the annulus around the center coming on 

(+) produce a burst of spikes. The changes in illumination carry important informa-

tion about moving stimuli and contrast boundaries around an object. These proper-

ties were discovered by Stephen Kuffler in 1953. 
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renewal that occurs in all cells. Even though most of the neurons in our 

brains are the same ones we had at birth,6 nearly every component of those 

neurons and the synapses that connect them turns over every day. Proteins 

are replaced as they wear out, and lipids in the membrane are renewed. 

With so much dynamic turnover, it is a mystery how our memories are 

maintained over our lifetimes. 

There is another possible explanation for the apparent longevity of 

memories: they may be like scars on our bodies that have survived as 

Figure 5.4

Receptive field for a simple cell in the cat primary visual cortex. This figure is from 

the 1962 paper by Hubel and Wiesel that discovered simple cells. Triangles are loca-

tions in the visual field where the onset a spot of light produces an on-response, and 

crosses are where the offset of a spot of light produces an off-response. (A) On-center 

cell in the retina (compare with figure 5.3, left). (B) Off-center cell in the retina 

(compare with figure 5.3, right). (C–G). Variety of simple cell receptive fields in the 

primary visual cortex, all of which are elongated compared to receptive fields in the 

retina, and with more complex arrangements of on-regions and off-regions. From 

D. H. Hubel and T. N. Wiesel, “Receptive Fields, Binocular Interaction and Func-

tional Architecture in the Cat’s Visual Cortex,” Journal of Physiology 160, no. 1 (1962): 

106–154.2, figure 2.
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markers of past events in our lives. The place to look for these markers is 

not inside neurons, where there is constant turnover, but outside, in the 

space between neurons, where the extracellular matrix, made from proteo-

glycans that are like the collagen in scar tissue, is tough material that lasts 

many years.7 If this conjecture is ever proven to be true, it means that our 

long-term memories are embedded in the brain’s “exoskeleton,” and we 

have been looking for them in the wrong places.8

Synapses contain many hundreds of unique proteins that control the 

release of neurotransmitters and the activation of receptors on the receiving 

Figure 5.5

Responses from a complex cell in the cat primary visual cortex. This figure is from the 

1962 paper by Hubel and Wiesel that discovered complex cells. A long, narrow black 

bar evokes a volley of spikes (vertical ticks) wherever it is placed anywhere within the 

receptive field (dashed lines) of a complex cell, provided the orientation is correct 

(upper three records). A non-optimal orientation gives a weaker response or none at 

all (lower two record). From D. H. Hubel and T. N. Wiesel, “Receptive Fields, Binocu-

lar Interaction and Functional Architecture in the Cat’s Visual Cortex,” Journal of 

Physiology 160, no. 1 (1962): 106–154.2, figure 7.
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neuron. In most cases, synaptic strengths can be selectively increased or 

decreased over a wide range, which, in the cortex, is a factor of 100. (Exam-

ples of synaptic learning algorithms that have been discovered in the brain 

will be discussed in later chapters.) Even more remarkable, new synapses are 

constantly being formed in the cortex and old ones removed, making them 

among the most dynamic organelles in the body. There are around 100 dif-

ferent types of synapses in the brain, with glutamic acid the most common 

excitatory neurotransmitter in the cortex and another amino acid, gamma-

aminobutyric acid (GABA), the most common inhibitory transmitter. There 

is also a wide range of time courses for the electrochemical influences that 

these neurotransmitter molecules have on other neurons. For example, the 

bullfrog sympathetic ganglion cell discussed in chapter 4 has synapses with 

time scales ranging from milliseconds to minutes.

Shape from Shading

Steven Zucker (figure 5.7), whose research focus is on a blend of computer 

vision and biological vision, has been working on a book to explain how 

vision works for as long as I have known him, which is more than thirty 

years. The problem is that Steve keeps discovering new things about vision 

and, as it did for Tristram Shandy, the protagonist of Laurence Sterne’s 

novel, the end of his book keeps receding into the future the more that he 

Figure 5.6

Ice cube model of a column of neurons in primary visual cortex. In a vertical penetra-

tion all neurons have the same orientation preference and ocular dominance. Under 

each square millimeter of cortex there is a complete set of orientations that change 

slowly across the surface of the cortex (front side of cube) and inputs from both eyes 

(right side of cube). From D. Hubel, Eye, Brain and Vision (New York: W. H. Freeman 

and Company, 1988), 131.
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discovers. His approach to vision is based on the exquisitely regular struc-

ture of the primary visual cortex (figure 5.6), a structure unlike any found 

elsewhere in the cortex, where neurons are organized in an almost mosaic-

like arrangement, begging for a geometrical interpretation. Most research-

ers in computer vision want to recognize objects by segmenting them from 

the background and identifying a few diagnostic features.

Steve was more ambitious and wanted to understand how we extract 

the shape of objects from surface shading and telltale signs of creases and 

folds. In an interview at the annual meeting of the Society for Neurosci-

ence in 2006, Frank Gehry, the architect who designs buildings that look 

like ship’s sails (figure 5.8), was asked how he got ideas for his buildings.9 

He replied that his inspiration came from looking at shapes of crumpled 

paper. But how does our visual system piece together the complex shape of 

the crumpled paper from the complex pattern of folds and shaded surfaces? 

Figure 5.7

Steven Zucker at Yale University lit from the top right side of the picture. From the 

variation in the shading on his sweater you can perceive the shapes of the folds. The 

equations on the blackboard behind him, inspired by the visual cortex of monkeys, 

explain how. We see the same perceived shapes independently of the light source. 

Courtesy of Steven Zucker.
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How do we perceive the shifting shapes of the surfaces on the Guggenheim 

Museum in Bilbao (figure 5.8)?

Steve Zucker recently was able to explain how we see folds in shaded 

images, based on the close relationship between the three-dimensional 

contours of the surface as seen on contour maps of mountains and the 

constant-intensity contours on images (figure 5.9).10 The link is provided by 

the geometry of surfaces.11 This explains the mystery of why our perception 

of shape is so insensitive to differences in the lighting and the surface prop-

erties of objects. It may also explain why we are so good at reading contour 

maps, where the contours are made explicit, and why we need only a few 

special internal lines to see the shapes of objects in cartoons.

In 1988, Sidney Lehky and I asked whether we could train a neural net-

work with one layer of hidden units to compute the curvature of shaded 

surfaces.12 We succeeded, and, to our surprise, the hidden units behaved 

like simple cells. But, on closer inspection, we discovered that not all of 

these “simple cells” were created equal. By looking at their projections to 

the output layer, which was trained to compute the curvature using a learn-

ing algorithm (discussed in chapter 8), we found that some of the hid-

den units were being used to decide between positive curvature (bulge) and 

negative curvature (bowl; figure 5.10). Like some simple cells, these units 

Figure 5.8

Guggenheim Museum in Bilbao, Spain, designed by Frank Gehry. Shading and reflec-

tions from curved surfaces give a strong impression of form and motion. Tiny people 

on the walkway calibrate the scale of the edifice. 
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Figure 5.9

Altitude contours of a surface (top left) compared with isophotes (contours of con-

stant intensity) of an image of the same surface (bottom left). Both give rise to the 

same parcellation between critical points as shown to the right of the contours. From 

Kunsberg and Zucker, “Critical Contours: An Invariant Linking Image Flow with  

Salient Surface Organization,” figure 5. Courtesy of Dr. A. G. Gyulassy.

Figure 5.10

Curvature from shading. Our visual system can extract the shape of an object from 

the slowly varying changes in the brightness across an image within the bounding 

contour. You see eggs or egg cartons depending on direction of shading and your 

assumption about the direction of lighting (usually assumed to be overhead). Turn 

this book upside down to see them reverse. From V. S. Ramachandran, “Perception 

of Shape from Shading,” Nature 331, no. 6152 (1988), figure 2. 
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were detectors; they tended to have either low activity or high activity, a 

bimodal distribution. By contrast, the other units in the hidden layer had 

graded responses and were functioning as filters that signaled to the output 

units the direction and magnitude of curvature.

The conclusion was a surprise: the function of a neuron is determined 

not simply by how it responds to inputs, but also by the neurons it activates 

downstream—by its “projective field.” Until recently, the output of a neu-

ron was much more difficult to determine than its inputs, but new genetic 

and anatomical techniques make it possible to track the axonal projections 

downstream with great precision, and new optogenetic techniques make 

it possible to selective stimulate specific neurons to probe their impact on 

perception and behavior.13 Even so, our small network could only identify 

the curvature of hills or bowls, and we still don’t know how globally orga-

nized perceptions, called “gestalts” in the psychology literature, are orga-

nized in the cortex.

Steve Zucker and I were once stranded at the old Stapleton International 

Denver Airport in 1984, our flights delayed by a snowstorm. Excited about 

computational neuroscience, which was still in its infancy, we dreamed up 

a workshop that would bring together computational and experimental 

researchers and decided to organize it at Woods Hole, where I had taken 

a summer course in neurobiology and had returned for several summers 

to work with Stephen Kuffler on physiological experiments at the Marine 

Biological Laboratory. Woods Hole is a beautiful Cape Cod village on the 

sea, not too far from Boston. Over the years, many of the leading research-

ers who study vision have come to this annual workshop, which has been 

another scientific high point for me. What emerged from these workshops 

was the beginning of a computational theory for the visual cortex, although 

confirmation of that theory would take another thirty years. (In chapter 9, 

we will see that the architecture of the most successful deep learning net-

work is remarkably similar to that of the visual cortex.)

Visual Maps in the Cortex Are Hierarchically Organized

Jon Kaas and John Allman, while at the Neurophysiology Department of 

the University of Wisconsin in the early 1970s, explored the cortical areas 

that received inputs from the primary visual cortex and discovered that dif-

ferent areas had different properties. For example, they discovered a map 

of the visual field in an area they called the “middle temporal cortex” or 

“MT,” whose neurons responded to oriented visual stimuli moving in a 

preferred direction. Allman mentioned to me that they had a difficult time 

getting the chairman of his department, Clinton Woolsey, to accept their 
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discovery. In an earlier experiment, Woolsey’s coarser recording techniques 

had missed the areas of extrastriate visual cortex that Kaas and Allman had 

later discovered with better recording techniques.14 More recent studies 

were to find some two dozen visual areas in the monkey visual cortex.

In 1991 while at Caltech, David Van Essen made a careful study of the 

inputs and outputs of each visual area of the cortex and arranged them in a 

hierarchical diagram (figure 5.11). Sometimes used simply to illustrate the 

complexity of the cortex, his diagram resembles the subway map of a great 

city, with boxes representing the stops and the lines joining them the high-

speed train routes. The visual input from the retinal ganglion cells (RGC) 

projects to the primary visual cortex (V1) at the bottom of the diagram. 

From there, the signals are transported up the hierarchy, each area special-

ized for a different aspect of vision, such as form perception. Near the top 

of the hierarchy on the right side of the diagram, the receptive fields of 

neurons in the anterior, central, and posterior areas of the inferotemporal 

cortex (AIT, CIT, and PIT) cover the entire visual field and respond prefer-

entially to complex visual stimuli such as faces and other objects. Although 

we don’t know how the neurons do this, we do know that the strengths of 

the connections can be altered by experience, so that neurons can learn 

how to respond to new objects. Van Essen has since moved to Washington 

University in St. Louis, where he is a co-director of the Human Connectome 

Project funded by the National Institutes of Health (NIH).15 The goal of his 

research team there is to use imaging techniques based on magnetic reso-

nance imaging (MRI)16 to work out a long-range map of connections in the 

human cortex (figure 5.12).

The Birth of Cognitive Neuroscience

In 1988, I served on a committee for the McDonnell and Pew Foundations 

that interviewed prominent cognitive scientists and neuroscientists to get 

their recommendations on how to jumpstart a new field called “cognitive 

neuroscience.”17 The committee traveled around the world to meet with 

experts to get their advice on which scientific topics were the most prom-

ising and where to place new centers for cognitive neuroscience. We met 

at the Harvard Faculty Club on a hot August afternoon to interview Jerry 

Fodor, who is an expert on the language of thought and a champion of 

the modular mind. He started by throwing down the gauntlet, “Cognitive  

neuroscience is not a science and it never will be.” He gave the impression 

that he had read all the neuroscience papers on vision and memory, and 

they did not come up to his standards. But when he remarked that “the 



Figure 5.11

Hierarchy of visual areas in the monkey brain. Visual information from retinal gan-

glion cells (RGC) in the retina project to the lateral geniculate nucleus (LGN) of the 

thalamus, whose relay cells project to the primary visual cortex (V1). The hierarchy 

of cortical areas terminates in the hippocampus (HC). Nearly all of the 187 links in 

the diagram are bidirectional, with feedforward connection from a lower area and 

feedback connection from the higher area. From D. J. Felleman and D. C. Van Es-

sen, “Distributed Hierarchical Processing in Primate Visual Cortex,” Cerebral Cortex 1,  

no. 1 (1991): 30, figure 4.
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McDonald Foundation is throwing away its money,” John Bruer, the presi-

dent of the McDonnell Foundation, was quick to point out that Fodor was 

confusing his foundation with the hamburger place down the road.

Unfazed, Fodor explained why the mind had to be thought of as a mod-

ular symbol-processing system running an intelligent computer program. 

Patricia Churchland, a philosopher at the University of California, San 

Diego, asked him whether his theory also applied to cats. “Yes,” said Fodor, 

“cats are running the cat program.” But when Mortimer Mishkin, an NIH 

neuroscientist studying vision and memory, asked him to tell us about dis-

coveries made in his own lab, Fodor mumbled something I couldn’t follow 

about using event-related potentials in a language experiment. Mercifully, 

at that moment, a fire drill was called and we all filed outside. Standing in 

the courtyard, I overheard Mishkin say to Fodor: “Those are pretty small 

potatoes.” When the drill was over, Fodor had disappeared.

Figure 5.12

Human connectome. Long-range fiber tracts in the white matter of the cerebral cor-

tex can be traced noninvasively with magnetic resonance imaging (MRI) based on 

the uneven diffusion of water molecules. The false colors label the directions of dif-

ferent pathways. From The Human Connectome Project.



78 Chapter 5

Cognitive neuroscience has grown into an important field that has 

attracted researchers from many areas of science, including social psychol-

ogy and economics, which previously had little or no direct connection 

with neuroscience. What made this possible was the introduction of nonin-

vasive methods for visualizing brain activity, in the early 1990s, especially 

functional magnetic resonance imaging (fMRI), which now has a spatial 

resolution of a few millimeters. The large fMRI data sets being generated are 

analyzed with new computational methods such as Independent Compo-

nent Analysis (to be discussed in chapter 6).

Since the brain can’t work without oxygen, and blood flow is tightly 

regulated at submillimeter levels, fMRI measures the blood oxygen level 

dependent (BOLD) signal as a surrogate for brain activity. The degree of 

oxygenation in the blood changes its magnetic properties, which can be 

monitored noninvasively with fMRI and used to produce dynamic images 

of brain activity with a time resolution of a few seconds, short enough to 

keep track of which parts of the brain are engaged during an experiment. 

Functional MRI has been used to explore the temporal integration time 

scale in different parts of the visual hierarchy.

Uri Hasson at Princeton University performed an fMRI experiment 

designed to probe which parts of the visual hierarchy are involved in proc-

essing movies of different lengths.18 A Charlie Chaplin silent film was cut 

into segments, which were scrambled at time scales of 4, 12, and 36 seconds 

and presented to subjects. At 4 seconds, subjects could recognize a scene; at 

12 seconds, connected actions; and at 36 seconds, a story with beginning 

and end. The fMRI responses in the primary visual cortex at the bottom 

of the hierarchy were strong and reliable regardless of the time scale, but 

at higher levels of the visual hierarchy, only the longer time scales evoked 

a reliable response, and areas of prefrontal cortex at the top of the hierar-

chy required the longest time interval. This is consistent with other experi-

ments showing that working memory, our ability to hold onto information 

like telephone numbers and elements of a task we are working on, is also 

organized in a hierarchy, with the longest working memory time scales in 

the prefrontal cortex.

One of the most exciting areas of research in neuroscience, the study 

of learning in brains can be studied at many levels of investigation, from 

molecules to behavior.



Timeline

1949—Donald Hebb publishes The Organization of Behavior, which intro-

duced the Hebb rule for synaptic plasticity.

1982—John Hopfield publishes “Neural Networks and Physical Systems 

with Emergent Collective Computational Abilities,” which introduced the 

Hopfield net.

1985—Geoffrey Hinton and Terry Sejnowski publish “A Learning  

Algorithm for Boltzmann Machines,” which was a counterexample to  

Marvin Minsky and Seymour Papert’s widely accepted belief that no learning  

algorithm for multilayer networks was possible.

1986—David Rumelhart and Geoffrey Hinton publish “Learning Internal 

Representations by Error-Propagation,” which introduced the “backprop” 

learning algorithm now used for deep learning.

1988—Richard Sutton publishes “Learning to Predict by the Methods of 

Temporal Differences” in Machine Learning. Temporal difference learning 

is now believed to be the algorithm implemented in all brains for reward 

learning.

1995—Anthony Bell and Terrence Sejnowski publish “An Information- 

Maximization Approach to Blind Separation and Blind Deconvolution,” 

describing an unsupervised algorithm for Independent Component 

Analysis.

2013—Geoffrey Hinton’s NIPS 2012 paper “ImageNet Classification with 

Deep Convolutional Neural Networks” reduces the error rate for correctly 

classifying objects in images by 18 percent.

2017—AlphaGo, a deep learning network program, beats Ke Jie, the world 

champion at Go.

II Many Ways to Learn





At a crowded cocktail party, it can be a challenge to hear the person in front 

of you when the air is filled with a cacophony of others talking around you. 

Having two ears helps direct your hearing in the right direction, and your 

memory can fill in missing snatches of conversation. Now imagine a cock-

tail party with 100 people in a room and 100 nondirectional microphones 

spread around, each picking up sounds from everyone but with different 

ratios of amplitudes for each person on each microphone. Is it possible 

to devise an algorithm that can separate each of the voices into separate 

output channels? To make it even more difficult, what if the sound sources 

were unknown—such as music, clapping, nature sounds, or even random 

noise? This is called the “blind source separation problem” (figure 6.1).

At the 1986 Neural Networks for Computing, AIP Conference, a precur-

sor of the NIPS conferences, held on April 13–16 in Snowbird, Utah, there 

was a poster entitled “Space or Time Adaptive Signal Processing by Neural 

Network Models.” Its authors, Jeanny Herault and Christian Jutten, used a 

learning algorithm to blindly separate mixtures of sine waves (which are 

pure frequencies) presented to a neural network model; they pointed to a 

new class of unsupervised learning algorithms.1 Although it was not known 

at the time if there was a general solution that could blindly separate other 

types of signals, a decade later, Anthony Bell and I found an algorithm that 

could solve the general problem.2 

Independent Component Analysis

The perceptron is a one-neuron neural network. The next simplest network 

architecture has more than one model neuron in the output layer; with 

each input neuron connected to each output neuron, it transforms pat-

terns on the input layer into patterns on the output layer. This network 

6 The Cocktail Party Problem
Chapter 6
The Cocktail Party Problem
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can do more than just classify inputs. It can learn to perform blind source 

separation.

An undergraduate working as a summer intern at ETH Zurich (the Swiss 

Federal Institute of Technology in Zurich) in 1986, Tony Bell (figure 6.2) 

was an early convert to neural nets and traveled down to the University of 

Geneva to hear four talks by neural network pioneers. After completing his 

doctorate at the University of Brussels, he moved to La Jolla in 1993 to join 

my lab as a postdoctoral fellow.

The “general infomax learning principle” maximizes the information 

flowing through a network.3 Tony was working on signal transmission in 

dendrites, which are long thin cables that the brain’s neurons use to collect 

information from thousands of synapses attached to the dendrites. He had 

an intuition that it should be possible to maximize the information coming 

Figure 6.1

Blind source separation. Kyle and Stan are talking at the same time in a room with 

two microphones. Each microphone picks up signals from the speakers and reflec-

tions from the walls of the room. The challenge is to separate the two voices from 

each other without knowing anything about the signals. Independent component 

analysis (ICA) is a learning algorithm that solves this problem without knowing any-

thing about the sources.



The Cocktail Party Problem 83

down a dendrite by changing the densities of ion channels in the dendrite. 

In simplifying the problem (ignoring the dendrites), Tony and I found a 

new information-theoretic learning algorithm, which we called “indepen-

dent component analysis” (ICA), that solved the blind source separation 

problem (box 6.1).4

Independent component analysis has since been used for thousands of 

applications and is now in signal processing textbooks.5 When applied to 

patches from natural images of outdoor scenes, the ICA’s independent com-

ponents are localized, oriented edge filters (figure 6.3), similar to those of 

the simple cells in the visual cortex of cats and monkeys (figure 5.4).6 With 

ICA, only a few of the many sources are needed to reconstruct a patch of an 

image; such reconstructions are called mathematically “sparse.”7 

Figure 6.2

Anthony Bell thinking independently around 1995 when he was working on inde-

pendent component analysis. Experts know many ways that fail to solve a problem, 

but it is often someone who is looking at a problem for the first time who sees a new 

approach and solves it. Tony and I discovered an iterative algorithm for solving the 

blind source separation problem that is now in engineering textbooks and has thou-

sands of practical applications. Courtesy of Tony Bell.
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These results confirmed a conjecture made by Horace Barlow, a distin-

guished vision scientist, in the 1960s, when David Hubel and Torsten Wie-

sel discovered simple cells in the visual cortex. An image contains a great 

deal of redundancy because nearby pixels often have similar values (such 

as pixels in the sky). Barlow conjectured that, by reducing the redundancy 

in the representation of natural scenes,8 the simple cells were able to trans-

mit the information in the image more efficiently. It took fifty years to  

develop the mathematical tools to confirm his intuition.

Tony and I also showed that when independent component analysis 

is applied to natural sounds, the independent components are temporal 

filters with different frequencies and durations, similar to the filters found 

in the early stages of the auditory system.9 This gave us confidence that 

we were on the right track to understanding fundamental principles about 

how the sensory signals were represented in the earliest stages of processing 

in the visual cortex. By extending this principle to independent feature 

subspaces of linear filters, it was possible to model complex cells in visual 

cortex.10

Box 6.1

How Independent Component Analysis Works

Comparison between principal component analysis (PCA) and indepen-

dent component analysis (ICA). The outputs from the two microphones in 

figure 6.1 are plotted against each other on the vertical and horizontal axes 

above. The coordinates of each dot are their values at a single time point. 

PCA is a popular unsupervised learning technique that picks out a direction 

that bisects the two signals, maximally mixing them, and the PCA axes are 

always perpendicular to each other. ICA finds the axes that fall along the 

directions of the dots, representing the separated signals, which may not be  

perpendicular.
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The ICA network has an equal number of input and output units and 

a fully connected set of weights between them. To solve the blind source 

separation problem, the sounds from the microphones are played through 

the input layer, one input unit for every microphone, and the ICA learning 

algorithm, like the perceptron algorithm, iteratively modifies the weights 

to the output layer until they converge. But, unlike the perceptron, which 

is a supervised learning algorithm, independent component analysis is an 

unsupervised learning algorithm that uses a measure of the independence 

between the output units as a cost function; it does not know what the 

output target should be. As the weights are changed to make the outputs as 

independent as possible, the original sound sources become perfectly sepa-

rated, or as “decorrelated” as possible if they are not independent. Unsu-

pervised learning can discover previously unknown statistical structure in 

many different types of data sets.

Figure 6.3

Independent component analysis filters derived from natural images. Small patches 

(12×12 pixels) from images of natural scenes in the left panel were used as inputs to 

an ICA network with 144 output units. The resulting independent components in 

the right panel resemble the simple cells found in the primary visual cortex: They 

are localized and oriented with positive regions (white) and negative regions (black), 

where gray is zero. It only takes a few of the filters to represent any given patch, a 

property called “sparsity.” Left: courtesy of Michael Lewicki; right: from Bell and 

Sejnowski, “The ‘Independent Components’ of Natural Scenes Are Edge Filters,”  

figure 4.
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Independent Components in the Brain

Tony Bell’s infomax ICA algorithm set off a sequence of Aha! moments, as 

others in my lab began to apply it to different types of recordings from the 

brain. Using The first electrical signals from the brain had been recorded 

from the scalp by Hans Berger in 1924 and was called “electroencephalog-

raphy” (EEG). Neuroscientists have used these complex, oscillating signals 

to eavesdrop on our ever-changing brain states, which vary with our alert-

ness and sensorimotor interactions. The electrical signal at an electrode on 

the scalp receives inputs from many different sources within the cerebral 

cortex as well as muscle and eye movement artifacts. Each scalp electrode 

receives a mixture of signals from the same set of sources in the brain, but 

with different amplitudes, which is formally the same as the cocktail party 

problem.

Scott Makeig, who was a staff scientist in my lab at the Salk Institute 

in the 1990s, used ICA to extract dozens of dipolar sources in the cortex 

and their time courses from EEG recordings (figure 6.4). A dipole is one 

of the simplest patterns a brain source can have, the simplest being a uni-

form pattern over the scalp, generated by a static point charge, and the sec-

ond simplest, the dipole pattern generated by current moving in a straight 

line, which occurs in cortical pyramidal neurons. Think of the dipole as 

an arrow. The surface of the scalp is positive in the direction of the arrow’s 

head and negative in the direction of its tail; the pattern covers the entire 

head, which is why it is so difficult to separate many brain sources that are 

activated at the same time. Two sources extracted from EEG, IC2 and IC3, 

are approximately dipolar sources in figure 6.4. Independent component 

analysis also separates the artifacts, such as eye movements and electrode 

noise, which could then be subtracted out with high accuracy (IC1 and IC 

4 in figure 6.4). Many thousands of papers have since been published using 

ICA to analyze EEG recordings, and important discoveries have been made 

using ICA to analyze a wide range of brain states.

Martin McKeown, who was then a postdoctoral fellow in my lab with a 

background in neurology, figured out how to flip space and time to apply 

independent component analysis to functional magnetic resonance imag-

ing recordings (figure 6.5).11 Brain imaging with fMRI measures the level of 

blood oxygenation, which is indirectly linked to neural activity, at tens of 

thousands of locations within the brain. In figure 6.5, the ICA sources were 

brain regions that had a common time course but were spatially indepen-

dent of the other sources. Sparsity in the spatial domain means that at any 

given time, only a few regions are highly active. 
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Figure 6.4

Independent component analysis applied to electroencephalographic (EEG) record-

ings from the scalp. Scalp maps seen from above (nose pointing up) with electrodes 

located at the black dots and color maps of the voltages in microvolts (μV) at one 

time point. The fluctuating EEG signals shown from five scalp channels shown in the 

left panel are contaminated with artifacts from eye blinks and muscle signals. ICA 

separates the brain components from artifacts, as shown in the right panel (where 

“IC” stands for “independent component”). IC1 is an eye blink based on the slow 

time course and the scalp map, which has highest values (red) over the eyes. IC4 is a 

muscle artifact based on the high frequency high amplitude noise and the localized 

source on the scalp map. IC2 and IC3 are brain sources, indicated by the dipolar pat-

tern on the scalp (positive red region opposed to negative blue region) compared to 

the more complex pattern on scalp from the EEG recordings as shown on the scalp 

map in the left panel. Courtesy of Tzyy-Ping Jung.
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Figure 6.5

Independent component analysis applied to functional magnetic resonance imaging 

(fMRI) data. A component consists of a brain activity map and a time course. This 

illustrates several type of components. The task presents a visual stimulus for 5 sec-

onds, which is picked up by task-related components. The time courses of the signals 

in the boxes is around one minute and the task is repeated four times, as in panel 

(a). Other components pick up artifacts such as head motions. From M. J. McKeown, 

T.-P. Jung, S. Makeig, G. D. Brown, S. S. Kindermann, T.-W. Lee, and T. J. Sejnowski, 

“Spatially Independent Activity Patterns in Functional MRI Data during the Stroop 

Color-Naming Task,” Proceedings of the National Academy of Sciences of the United States 

of America 95, no. 3 (1998): 806, figure 1.
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Because independent component analysis is unsupervised, it can reveal 

networks of brain areas that work together, which goes beyond supervised 

techniques that try to relate the activity in an area to a sensory stimulus or 

motor response. For example, ICA has been used to uncover multiple rest-

ing states in fMRI recordings from subjects who are simply asked to stay still 

in the scanner and rest.12 We still do not yet understand what these resting 

states mean, but they could represent combinations of brain areas that are 

responsible for what happens in our brains when we daydream, have a nag-

ging concern in the back of our mind, or are planning dinner.

The principle of maximum independence is related to principles of 

sparse coding. Although ICA uncovers many independent components, 

only a few of them were needed to reconstruct a given patch from a natural 

image. This principle also applies to the visual cortex, which has one hun-

dred times more cells than the inputs coming from a retina. Each of our ret-

inas has 1 million ganglion cells, and there are 100 million neurons in the 

primary visual cortex, the first of many layers in the visual hierarchy in the 

cortex. The compact coding of visual signals in the retinas gets expanded 

in the cortex to a new code that is highly distributed and highly sparse. 

The expansion into a space of much higher dimensionality is exploited in 

other coding schemes, including those found in auditory cortex and olfac-

tory cortex, and a new class of algorithms called “compressed sensing algo-

rithms” has generalized the principle of sparsity to improve the efficiency 

of storing and analyzing complex data sets.13

Beyond Independent Component Analysis

The story of ICA illustrates the importance of techniques in making new 

discoveries in science and engineering. We normally think of techniques as 

measuring devices like microscopes and amplifiers. But algorithms are also 

techniques, and they can allow new discoveries to be made with data from 

old instruments. EEG recordings have been around for nearly 100 years, but 

without independent component analysis, it wasn’t possible to pin down 

the underlying brain sources. The brain itself is a system of interlocking 

algorithms, and I would not be surprised if in some part of the brain nature 

discovered a way to implement ICA.14

During the 1990s, many other advances were made in developing new 

learning algorithms for neural networks, many of which, like ICA, are now 

part of the mathematical toolbox in machine learning. These algorithms are 

embedded in many commonly used appliances, none of which say “neural 

networks inside.” Take headsets or cell phones, for example. Te-Won Lee 
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and Tzyy-Ping Jung, two former postdoctoral fellows in my lab who went 

on to start a company called “SoftMax,” used ICA with two microphones 

in a Bluetooth headset to cancel background noise, making it possible for a 

listener to hear someone talking at a noisy restaurant or sporting event. In 

2007, SoftMax was bought by Qualcomm, which designs the chips that are 

used in many cell phones and today ICA-like solutions are embedded in a 

billion cell phones. If you had a penny for every cell phone running ICA, 

you’d be a multimillionaire today.

Tony Bell has for many years been interested in an even more difficult 

problem. As human beings, we have many networks within us in which 

information emerges from one network level to another, from molecules, to 

synapses, to neurons, to neural populations, and on up to form decisions, 

all explained by the laws of physics and biochemistry (figure 4.4). But we 

have the impression that we, not physics or biochemistry, are in control. 

It is a mystery how internal activity emerging in neural populations in our 

brains leads us to make decisions, to read this book, for example, or to 

play tennis. Made well below the level of our consciousness, these decisions 

somehow bubble up from neurons interacting through synapses formed by 

experiences based on molecular mechanisms. But from our human perspec-

tive, it was our decisions that caused all these events to occur in our brains: 

introspectively, causality seems to be running in the opposite direction 

from physics and biochemistry. How to reconcile these two perspectives is 

a deep scientific question.15



Computer scientist Jerome Feldman was at the University of Rochester 

when he embraced a connectionist network approach to artificial intelli-

gence in the 1980s. Ever the truth teller, Jerry pointed out that the algo-

rithms being used in AI took billions of steps to reach an often incorrect 

conclusion, whereas the brain could reach a usually correct conclusion in 

around 100 steps.1 Feldman’s “100-step rule” was not popular among AI 

researchers at the time, but a few, most notably Allen Newell at Carnegie 

Mellon, did use it as a constraint.

Jerry once rescued me when I got stranded at the airport in Rochester, 

New York. I was on my way back to Baltimore from a visit to the General 

Electric Research Laboratory in Schenectady when the pilot started telling 

us about the weather in Rochester. I’d gotten on the wrong plane. After 

we landed and I booked the earliest flight to Baltimore, which didn’t leave 

until the next day, I bumped into Jerry, who was returning home from a 

committee meeting in Washington, D.C. He graciously invited me to stay 

with him that night. Jerry has since moved on to UC, Berkeley, but I think 

of him whenever I’m stranded at an airport.

Jerry distinguished between “scruffy” and “neat” connectionist models. 

Scruffy models, like the ones that Geoffrey Hinton and I worked on, distrib-

uted the representation of objects and concepts across many units in the 

network, whereas neat models, like the ones Jerry believed in, provided a 

computationally compact representation of objects and concepts, with one 

label on one unit. In a broader context, scruffy science uses approximations 

to get qualitative answers, whereas neat science strives to pin down exact 

solutions to problems. In reality, both are needed to make progress.2 I had 

no problem with getting a scruffy toehold, but made every effort to reach 

a neater explanation, and eventually it paid off: Geoffrey and I were about 

to hit the “neat” jackpot.

7 The Hopfield Net and Boltzmann Machine
Chapter 7
The Hopfield Net and Boltzmann Machine

© Massachusetts Institute of TechnologyAll Rights Reserved
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John Hopfield

To receive a doctorate in physics, you have to solve a problem. A good 

physicist should be able to solve any problem, but a great physicist 

knows what problem to solve. John Hopfield is a great physicist. After a 

distinguished career in condensed matter physics, he turned his interest 

to biology and, in particular, to the problem of “molecular proofread-

ing.” When DNA is replicated during cell division, errors are inevitable, 

and these must be corrected to preserve the fidelity of the daughter cells. 

John figured out a clever scheme for how that could be done, and, even 

though the process he proposed consumes energy, subsequent experiments 

showed he was right. Getting anything right in biology is a spectacular  

achievement.

John was my doctoral advisor at Princeton when he was just getting 

interested in neuroscience. With growing enthusiasm, he would tell me 

what he had learned from the neuroscientists who spoke at meetings of the 

Neuroscience Research Program (NRP), based in Boston. I found the pro-

ceedings of small workshops published by the NRP invaluable since they 

gave me a sense of what problems were being studied and the thinking 

in the field at the time. I still have my copy of the proceedings of a work-

shop on neural coding that was organized by the legendary neuroethologist 

Theodore Holmes Bullock, who would one day become a colleague of mine 

at UC, San Diego. Ted’s book with Adrian Horridge on invertebrate nervous 

systems is a classic.3 I collaborated with Ted on modeling the collective 

behavior of coral reefs and was proud to be a coauthor on his last scientific 

paper in 2008.4

Neural networks with feedback connections to earlier layers and recur-

rent connections between units within a layer can have much more com-

plex dynamics than networks that only have feedforward connections. 

The general case of networks with arbitrarily connected units with positive 

(excitatory) and negative (inhibitory) weights poses a difficult mathemati-

cal problem. Although Jack Cowan at the University of Chicago and Ste-

phen Grossberg at Boston University had made progress in the late 1970s 

by showing that such networks could reproduce visual illusions5 and visual 

hallucinations,6 engineers found it hard to get the networks to solve com-

plex computational problems.

A Network with Content-Addressable Memories

In the summer of 1983, Geoffrey Hinton, John Hopfield (figure 7.1), and 

I were at a workshop at the University of Rochester organized by Jerry 
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Figure 7.1

John Hopfield solving a problem on the waterfront at Woods Hole, Massachusetts 

around 1986. Hopfield had a seminal influence on neural networks in the 1980s by 

inventing an eponymous network that opened the door to deep learning. Courtesy 

of John Hopfield.

Feldman. Hopfield told us that he had solved the convergence problem 

for a strongly interacting network. He had proved that a particular type of 

nonlinear network model, now called the “Hopfield net,” was guaranteed 

to converge to a stable state, called an “attractor” (figure 7.2; box 7.1).7 

(Highly nonlinear networks are prone to oscillate or exhibit even more cha-

otic behavior.) Furthermore, the weights in the network could be chosen 

so that the attractors were memories. The Hopfield net could thus be used 

to implement what is called a “content-addressable memory,” whereby a 

stored memory could be retrieved by starting with part of the memory and 

letting the network complete it. This is reminiscent of how we recall memo-

ries. If we see the face of someone we know, we can recall the person’s name 

and conversations we’ve had with that person.

What made the Hopfield net a major breakthrough was that it was 

mathematically guaranteed to converge. Researchers had thought it would 
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be impossible to analyze the general case of a highly nonlinear network. 

When updates are made simultaneously for all the units in such a network, 

the dynamics can be extremely complicated, and there is no guarantee of 

convergence.8 But Hopfield showed that, when the units of the network 

are updated sequentially, the special case of a symmetric network in which 

reciprocal connections between pairs of units are equal in strength is trac-

table and does indeed converge. 

There is increasing evidence that neural networks in the hippocampus 

(essential for storing long-term memories of specific events and unique 

objects) have attractor states like those in a Hopfield net.9 Although the 

Hopfield model is highly abstracted, its qualitative behavior is similar to 

what is observed in the hippocampus. Hopfield nets were a bridge from 

physics to neuroscience that many physicists crossed in the 1980s. Sur-

prising insights were obtained by analyzing neural networks and learning 

algorithms with sophisticated tools from theoretical physics. Physics, com-

putation, and learning are profoundly linked in an area of neuroscience 

theory that has been successful at illuminating brain function.

John Hopfield and David Tank, who was then at Bell Laboratories, went 

on to show that a variant of the Hopfield net, in which the units were 

continuously valued between zero and one, could be used to obtain good 

solutions for optimization problems such as the “traveling salesman prob-

lem,” where the goal is to find the shortest route that visits many cities 

only once.10 This is a notoriously difficult problem in computer science. 

Figure 7.2

Energy landscape of a Hopfield net. (Left) The state of the network can be visualized 

as a point on an energy surface. (Right) Each update moves the state closer to one 

of the energy minima, called “attractor states.” From A. Krogh, J. Hertz, and R. G. 

Palmer, Introduction to the Theory of Neural Computation (Redwood City CA: Addison-

Wesley, 1991). Left: figure 2.6; Right: figure 2.2.
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Box 7.1

The Hopfield Net

In a Hopfield net, each unit sends an output wire to all the other units in the 

network. The inputs are xi and the outputs are yj. The strengths of the con-

nections or weights between the units are symmetric: wij = wji. On each time 

step, one of the units is updated by summing up inputs and comparing that 

to a threshold: If the inputs exceed the threshold, the output of the unit is 1; 

otherwise 0. Hopfield showed that the network has an energy function that 

never increases with each update of a unit in the network:

E = Σ wij xi xj

Eventually, the Hopfield net arrives at an “attractor state,” when none of 

the units changes and the energy function is at a local minimum. This state 

corresponds to a stored memory, which can be recovered by initializing the 

network with a part of the stored state. This is how the Hopfield net imple-

ments a content-addressable memory. The weights of the stored vectors can 

be learned by Hebbian synaptic plasticity:

Δwij = α xi xj,

where the left side is the change in the strength of the weight, α is the learning 

rate, and xi is a stored vector.

Drawing courtesy of Dale Heath.
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The energy function for the networks included the lengths of the paths and 

constraints on visiting each city once. After an initial transient, Hopfield 

and Tank’s network would settle down to a state of minimum energy that 

represented a good tour, though not always the best tour.

Finding the Global Energy Minimum

Dana Ballard, who with Christopher Brown had written a classic book on 

computer vision in 1982,11 was also at the 1983 workshop. Geoffrey Hinton 

and I were working with Dana on a review of a new approach to analyzing 

images for Nature.12 The idea was that the nodes in a network model rep-

resented features in the image and the connections in the network imple-

mented constraints between the features; compatible nodes had positive 

interactions and inconsistent nodes had negative interactions with one 

another. In vision, a consistent interpretation of all the features must be 

found that satisfies all the constraints.

Could the Hopfield net solve this constraint satisfaction problem? The 

energy function was a measure of how well the network satisfied all the 

constraints (See box 7.1). The vision problem required a solution that was 

the global energy minimum, the best solution, whereas the Hopfield net, by 

design, found only local minima of the energy. I had recently come across 

a paper in the journal Science by Scott Kirkpatrick, then at IBM’s Thomas 

J. Watson Research Center in Yorktown Heights, New York, that I thought 

could help.13 Kirkpatrick used a method called “simulated annealing” to get 

around local minima. Suppose you had a bunch of components in an elec-

trical circuit that had to be mounted onto two circuit boards. What would 

be the best placement of the parts to minimize the number of wires needed 

to connect them?

Poor solutions are found by initially randomizing the placement of the 

parts, then moving them back and forth one at a time to see which place-

ment had fewest wires because the network can easily get trapped in a local 

minimum when there is no improvement by moving any single compo-

nent. The way to escape the local minimum is to allow random jumps to 

a configuration with longer wire lengths. The probability of jumping out, 

though high at the beginning, gradually decreases so that, by the end, it is 

zero. If the decrease in probability is slow enough, the final placement of 

the parts will have a global minimum of connecting wires. In metallurgy, 

this process is called “annealing”; heating up a metal and slowly cooling 

it produces large crystals with minimal defects, which are what make the 

metal brittle and prone to cracks.
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Boltzmann Machines

In a Hopfield net, simulated annealing corresponds to “heating up” the 

updates so that the energy can go uphill as well as downhill. Because the 

units flip randomly at a high temperature, if the temperature is gradually 

lowered, there is a high probability that the Hopfield net will end up frozen 

in the lowest energy state when the temperature reaches zero. In practice, 

simulations start out at a constant temperature to allow the network to 

come to equilibrium, where it can visit many nearby states and explore a 

wide range of possible solutions.

For example, in figure 7.3, the silhouetted figure is ambiguous and, 

depending on what part you pay attention to, you will either see a vase 

or two faces, but never both at the same time. Consider the problem of 

deciding what part of the image is the figure and what is the background 

(called the “ground”). We designed a Boltzmann machine network that 

mimics this figure–ground decision,14 with some units that represent the 

Figure 7.3

Ambiguous figure–ground problem. (Left) When you focus your attention on the 

black figure, you see a vase and the white is ground. But when you focus on the white 

areas, you can see two faces looking at each other. You can flip back and forth but 

you cannot see both interpretations at the same time. (Right) Figure–ground network 

model. Two types of units representing the edges of an object (line segments) and 

whether a pixel is part of the figure or part of the ground (squares). Image inputs are 

bottom up, and attention input is top down. Attention is implemented as a bias to 

the region that should be filled in as the figure. From P. K. Kienker, T. J. Sejnowski, 

G. E. Hinton, and L. E. Schumacher, “Separating Figure from Ground with a Parallel 

Network,” Perception 15 (1986): 197–216. Left: figure 1; right: figure 2.
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Box 7.2

The Boltzmann Machine

All connections in a Boltzmann machine are symmetric, as they are in the 

Hopfield net, and the binary units are updated one a time by setting si = 1 

with a probability given by the above sigmoid function, where the inputs ΔE 

are scaled by temperature T. The input layer and the output layer are “vis-

ible,” in the sense that they interact with the outside world. The “hidden units” 

represent features having internal degrees of freedom that can affect the vis-

ible units. The Boltzmann machine learning algorithm has two phases: in the 

“wake” phase, the inputs and outputs are clamped and after the network comes 

to equilibrium the average correlation between pairs of units is computed;  

in the “sleep” phase, the correlations are again computed with the inputs and 

outputs unclamped. Then the weights are incrementally updated:

∆w s s s sij i j i j
wake sleep

= < > − < >ε ( )
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figure when they are activated and others that represent the edges. We have 

already seen that there are simple cells in the visual cortex that are activated 

by edges, but the figure could lie on either side of an edge. This was imple-

mented in our Boltzmann machine network by having two edge units, each 

supporting the figure on either side. Such neurons were subsequently dis-

covered in the visual cortex and are called “border-ownerships cells.”15

The weights in the Boltzmann network were handcrafted to implement 

the constraints (figure 7.4). There are excitatory connections between the 

figure units and inhibitory connections between the edge units. The edge 

units have excitatory connections with the figure units they point to, sup-

porting the figure, and inhibitory connections with the figure units in the 

opposite direction. Attention was implemented by a bias to some of the 

figure units. When the Boltzmann network uses the Hopfield update rule 

for the units, it falls into local energy minima that are consistent in local 

patches but inconsistent globally. When noise was added to the updates, 

the Boltzmann network jumped out of the local minima, and, by slowly 

annealing the temperature of the noise, the network relaxed to a globally 

consistent solution at the global energy minimum (figure 7.4). Because the 

updates are asynchronous and independent, the network can be imple-

mented by a computer with millions of units working together in parallel 

and can converge to solutions much faster than a digital computer that 

performs one operation at a time, in sequence.

I had by this time finished my postdoctoral fellowship at Harvard  

Medical School with Stephen Kuffler and moved to my first job in the 

Department of Biophysics at Johns Hopkins; Geoffrey Hinton had taken a 

faculty position in the Computer Science Department at Carnegie Mellon, 

where he was fortunate to have the support of Allen Newell, who was open 

to new directions in artificial intelligence. Pittsburgh and Baltimore are 

close enough so that Geoffrey and I could visit each other on weekends. We 

called our new version of the Hopfield net the “Boltzmann machine” after 

Ludwig Boltzmann, the nineteenth-century physicist who was a founder of 

statistical mechanics, the source of the tools that we were using to analyze 

our fluctuating neural network model, which, we were about to discover, 

was also a powerful learning machine.

Kept at a constant “temperature,” a Boltzmann machine will come to 

equilibrium. Something magical happens at equilibrium that would open 

a door that everyone thought was closed for good: multilayer neural net-

work learning. One day, Geoffrey called to say he had just derived a simple 

learning algorithm for the Boltzmann machine. The goal of the algorithm 

was to perform a mapping from input units to output units, but, unlike the 



Figure 7.4

Separating figure from ground with a Boltzmann machine. (Above) The square units 

in the network identify the figure and the triangular edge units identify the outline, 

with the signs of the connections indicated. Edge units can point toward or away 

from the figure. (Below) (a) Snapshot of a network with attention on the inside of the 

“C.” The temperature starts out high so that the units are fluctuating between on and 

off. (b) As the temperature drops, units on the inside of the “C” begin to coalesce, 

with support from the boundary units that point to the inside. Units on the outside 

that do not have attention or edge input disappear as the temperature is decreased. 

(c) The figure is filled in when attending the inside when the temperature reaches 

zero. (d) The outside is filled in when the process is repeated while attending the  

outside. From P. K. Kienker, T. J. Sejnowski, G. E. Hinton, and L. E. Schumacher, 

“Separating Figure from Ground with a Parallel Network,” Perception 15 (1986): 197–

216, Below: figure 6; above: figure 3.
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perceptron, the Boltzmann machine also had units in between, which we 

called “hidden units” (box 7.2). By presenting input-output pairs and apply-

ing the learning algorithm, the Boltzmann network learned the desired 

mapping. But the goal was not just to memorize the pairs; it was also to 

correctly categorize new inputs that were not used to train the network. 

Also, because it is always fluctuating, the Boltzmann machine is learning 

the probability distribution—how often each output state is visited for a 

given input pattern—which makes it generative: after learning, it can gen-

erate new input samples by clamping each output category.

Hebbian Synaptic Plasticity

The surprise was that the Boltzmann machine learning algorithm turned 

out to have a long history in neuroscience, going back to the psychologist 

Donald O. Hebb, who in his book The Organization of Behavior postulated 

that when two neurons fired together, the synapse between them should 

strengthen:

Let us assume that the persistence or repetition of a reverberatory activity (or 

“trace”) tends to induce lasting cellular changes that add to its stability. When 

an axon of cell A is near enough to excite a cell B and repeatedly or persistently 

takes part in firing it, some growth process or metabolic change takes place in one 

or both cells such that A’s efficiency, as one of the cells firing B, is increased.16

This may be the most famous prediction in all of neuroscience. Heb-

bian synaptic plasticity was later discovered in the hippocampus, an impor-

tant brain area for long-term memory. When a hippocampal pyramidal 

cell receives a strong input at the same time the neuron is spiking, the 

strength of the synapse is increased. Subsequent experiments showed that 

the strengthening was based on the conjunction of transmitter release from 

the synapse and elevation of the voltage in the recipient neuron. More-

over, this conjunctive occurrence was recognized by a special receptor, the 

NMDA (N-methyl-D-aspartate) glutamate receptor that triggers long-term 

potentiation (LTP), which is rapid in onset and long lasting, a good can-

didate for the substrate of long-term memory. Hebbian plasticity at a syn-

apse is governed by coincidences between inputs and outputs, just like the 

Boltzmann machine learning algorithm (see box 7.2).

Even more amazing, the Boltzmann machine had to go to sleep to be 

able to learn. Its learning algorithm had two phases. In the first or “wake” 

phase, with the input and output patterns were clamped to the desired map-

ping, the units in the network were updated many times to settle down to 
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an equilibrium, and the fraction of time each pair of units were on together 

was counted. In the second or “sleep” phase, the input and output units 

were set free, and the fraction of time each pair of units were on together 

was counted in a free running condition. Each connection strength was 

then updated in proportion to the difference between the coincidence rates 

in the wake and sleep phases (box 7.2). The computational reason for the 

sleep phase is to determine which part of the clamped correlations was 

due to external causes. Without subtracting the internally generated cor-

relations, the network would strengthen the internal patterns of activity 

and would learn to ignore outside influences, a network version of folie 

à deux. Interestingly, extreme sleep deprivation in humans leads to delu-

sional states, a common problem in intensive care units in hospitals that 

have no windows and constant lighting. Patients with schizophrenia often 

have sleep disorders that can contribute to their delusional ideation. We 

were convinced that we were on the right track to understanding how the 

brain worked.

Learning Mirror Symmetries

A problem the Boltzmann machine could solve but a perceptron could  

not is how to learn mirror symmetries.17 The human body is bilaterally 

symmetric along a vertical axis. We can generate a large number of ran-

dom patterns with this axis of symmetry, as shown in figure 7.5, and also 

with horizontal and diagonal axes of symmetry. In our Boltzmann machine 

network, 10×10 blocks of binary inputs projected to sixteen hidden units, 

which in turn projected to three output units, one for each of the three 

possible axes of symmetry. The Boltzmann machine was 90 percent success-

ful at classifying the axis of symmetry of novel inputs after being trained 

on 6,000 symmetric input patterns. A perceptron can do no better than 

chance because a single input carries no information about the symmetry 

of the pattern; the correlations between pairs of inputs must be interro-

gated. What is remarkable is that the array of inputs a human observer sees 

is not what the Boltzmann machine sees since each hidden unit receives 

inputs from the whole array in no particular order. The equivalent problem 

for an observer would be to randomize the locations of the input units in 

the array, which would make the array look random to the observer even 

though there is a hidden symmetry.

One day, I was watching the display and calling the symmetry of each 

input pattern at a rate of two per second. Neal Cohen, then a colleague 

in the Psychology Department at Johns Hopkins, was also watching the 



The Hopfield Net and Boltzmann Machine 103

Figure 7.5

Symmetric random patterns. Each 10×10 array has a vertical, horizontal, or diagonal 

axis of mirror symmetry. The goal of the network model is to learn how to classify 

the axis of the symmetry in new patterns not used to train the network model. From 

T. J. Sejnowski, P. K. Kienker, and G. E. Hinton, “Learning Symmetry Groups with 

Hidden Units: Beyond the Perceptron,” Physica 22D (1986): 260–275, figure 4.
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display but could not categorize the symmetries without scrutinizing the 

patterns and was amazed that I could. Watching the display for days as  

the Boltzmann machine learned had trained my visual system to detect the 

symmetry automatically, without having to look around the display. Neal 

and I designed an experiment with undergraduates as naive subjects and 

followed their progress.18 At the beginning, it took them many seconds to 

get the right symmetry, but after a few days of training, they were much 

faster, and by the end of the experiment, they could detect the symmetries 

so quickly and effortlessly they could talk with us during the task and still 

get all of them right. This was remarkably fast perceptual learning.

I taught “The Biophysics of Computation” at Johns Hopkins, a course 

that attracted several talented students and researchers. Ben Yuhas was a 

graduate student in the Department of Electrical Engineering who worked 

with me and for his doctoral dissertation, he trained a neural network to 

read lips.19 There is information on the sound of a voice in the movement 

of a person’s mouth. Ben’s network transformed images of mouths into the 

corresponding frequency spectrum of the sound being generated at each 

time step. This could then be added to the noisy sound spectrum to improve 

speech recognition. His fellow graduate student Andreas Andreou, a Greek 

Cypriot with a booming voice, was building analog VLSI (very large-scale 

integration) chips in the basement of Barton Hall. (These chips are featured 

in chapter 14.) In the 1980s, there was hostility from faculty in their depart-

ment toward neural networks, which was common at many institutions, 

but this did not deter either Ben or Andreas. Indeed, Andreas would go on 

to become a full professor at Hopkins and to cofound the Johns Hopkins 

University Center for Language and Speech Processing. Ben has a consult-

ing group on data science for political and corporate clients.

Learning to Recognize Handwritten Zip Codes

More recently, Geoffrey Hinton and his students at the University of 

Toronto trained a Boltzmann machine with three layers of hidden units 

to classify handwritten zip codes with high accuracy (figure 7.6).20 Because 

the Boltzmann network had feedback as well as feedforward connections, 

it was possible to run the network in reverse, clamping one of the output 

units and generating input patterns that corresponded to the clamped out-

put unit (figure 7.7). Generative networks capture the statistical structure 

of the training set and the samples they generate inherit these properties. 

It is as if these networks go to sleep and activity at the highest level of the 

networks generates sequences of dreamlike states on the input layer.

Although the rise of neural networks in physics and engineering was 

swift, traditional cognitive scientists were slow to accept it as a formalism 



Figure 7.6

Multilayer Boltzmann machine for handwritten digit recognition and generation. 

The image has 28 × 28 = 784 pixels, which can be white or black. The goal is to 

classify the digit based on the ten output units (0–9). From G. E. Hinton, “Learning 

Multiple Layers of Representation.” Trends in Cognitive Sciences 11 (2007): 428-434, 

figure 1.

Figure 7.7

Input layer patterns generated by a multilayer Boltzmann machine trained to recog-

nize handwritten digits. Each line was generated by clamping one of the ten output 

units (figure 7.6), and the input layer continuously morphed between the examples 

shown above. None of these digits were in the training set—they were “hallucinated” 

by the internal structure of the trained network. From G. E. Hinton, S. Osindero, 

and Y. Teh, “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation 18 

(2006): 1527–1554 figure 8. 
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to understand memory and language processing. Except for the Parallel 

Distributed Processing (PDP) Group in La Jolla and a few isolated outposts, 

symbol processing was still the only game in town. At a 1983 Cognitive 

Science Society symposium that Geoffrey and I attended, Zenon Pylyshyn, 

a psychologist who studies short-term memory and imagery, showed his 

disdain for the Boltzmann machine by pouring a glass of water on the 

stage and shouting, “This is not computation!” Others dismissed the whole 

enterprise as mere “statistics.” But not Jerome Lettvin, who told us that 

he really liked what we were doing. Lettvin had written the classic 1959 

paper “What the Frog’s Eye Tells the Frog’s Brain” with Humberto Mat-

urana, Warren McCulloch, and Walter Pitts,21 which reported evidence for 

bug detector neurons in the frog retina that responded best to small dark 

spots, an idea that was highly influential in systems neuroscience. His sup-

port for our fledgling neural network model was an important link to an  

earlier era.

Unsupervised Learning and Cortical Development

The Boltzmann machine can be used either in its supervised version, where 

both inputs and outputs are clamped, or in its unsupervised version, where 

only the inputs are clamped. Geoffrey Hinton used the unsupervised ver-

sion to build up a deep Boltzmann machine one layer at a time.22 Starting 

with a layer of hidden units connected to the input units, called a restricted 

Boltzmann machine, Geoffrey trained these on unlabeled data, which are 

a lot easier to come by than labeled data (there are billions of unlabeled 

images and audio recordings on the Internet), and learning is much faster. 

The first step in unsupervised learning is to extract from the data statisti-

cal regularities that are common to all the data, but the first layer of hid-

den units can only extract simple features, features that a perceptron can 

represent. The next step is to freeze the weights to the first layer and add a 

second layer of units on top. More unsupervised Boltzmann learning leads 

to a more complex set of features, and this process can be repeated to create 

a network that is many layers deep.

Because the units in the upper layers incorporate more nonlinear combi-

nations of low-level features, making it possible for them as a population to 

abstract what is general from what is specific, classification becomes much 

easier in the upper layers, requiring many fewer training examples to reach 

convergence at a higher level of performance. Although it is still an open 

problem to describe the mathematics of this disentangling, new geometri-

cal tools are being brought to bear on these deep networks.23
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The cortex also seems to develop layer by layer. At early stages in the 

development of the visual system, neurons in the primary visual cortex, 

the first to receive inputs from the eyes, are highly plastic and can easily be 

rewired by the stream of visual input, which ends when the critical period 

does. (This was described in chapter 5.) The hierarchy of visual areas and 

other sensory streams in the back of the brain mature first; cortical areas 

closer to the front of the brain take much longer. The prefrontal cortex, 

the part that is furthest forward, may not reach full maturity until early 

adulthood. Thus there is a gradual wave of development with overlapping 

critical periods when the connections in a cortical area are the most influ-

enced by neural activity. Working with other colleagues, cognitive scientists 

Jeffrey Elman and Elizabeth Bates at UC, San Diego developed connection-

ist network explanations for how the progressive development of the cor-

tex could account for the new abilities that emerge as a child learns more 

about the world.24 This opened a new research direction into how our long 

childhood has made it possible for humans to become champion learners, 

and it put previous claims for the innateness of some behaviors into a new 

perspective.

In Liars, Lovers and Heroes,25 which I coauthored with Steven Quartz, a 

former postdoctoral fellow in my lab who is now on the faculty at Caltech, 

we wrote that, during the extended period of brain development in child-

hood and adolescence, experience can profoundly influence the expression 

of genes in neurons, and thereby alter the neural circuits that are respon-

sible for behavior. The interplay between genetic differences and environ-

mental influences is an active area of research that is shedding new light 

on the complexity of brain development, an area that goes beyond the 

nature versus nurture debate and reframes it in terms of cultural biology. 

Our biology both produces human culture and, in turn, is molded by it.26 A 

new chapter in this story was opened by a recent discovery: when there is 

a rapid increase in the formation of synapses between neurons during early 

development, the DNA inside neurons is modified epigenetically after birth 

by a form of methylation that regulates gene expression and is unique to 

the brain.27 This epigenetic modification could be the link between genes 

and experience that Steve Quartz and I had envisioned.

By the 1990s, the neural network revolution was well under way. Cogni-

tive neuroscience was expanding, and computers were getting faster—but 

not fast enough. The Boltzmann machine was technically sweet but terribly 

slow to simulate. What really helped us make progress was a faster learning 

algorithm, which fell out of the sky just when we most needed it.





The University of California, San Diego, founded in 1960, has grown into a 

major center for biomedical research. It inaugurated a Department of Cog-

nitive Science in 1986, the first of its kind in the world.1 David Rumelhart 

(figure 8.1) was already a distinguished mathematical and cognitive psy-

chologist who had worked within the symbolic, rule-based tradition that 

was dominant in artificial intelligence research during the 1970s. When 

I first met David in 1979 at the workshop organized by Geoffrey Hinton 

at UC, San Diego, he was pioneering a new approach to human psychol-

ogy that he and James McClelland called “parallel distributed processing” 

(PDP). David thought deeply about problems and often made insightful 

comments.

The Boltzmann machine learning algorithm could provably learn how 

to solve problems that required hidden units, showing that, contrary to the 

opinion of Marvin Minsky and Seymour Papert and most everyone else in 

the field, it was possible to train a multilayer network and overcome the 

limitations of the perceptron. There was no limit either to the number of 

layers in a network or to the connectivity within any given layer. But there 

was one problem: coming to equilibrium and collecting statistics became 

increasingly slow to simulate, and larger networks took much longer to 

reach equilibrium.

In principle, it is possible to build a computer with a massively parallel 

architecture that is much faster than one with a traditional von Neumann 

architecture that makes one update at a time. Digital computers in the 

1980s could perform only a million operations per second. Today’s com-

puters perform billions of operations per second, and, by linking together 

many thousands of cores, high-performance computers are a million times 

faster than before—an unprecedented increase in technological power.

The Manhattan Project was a $26 billion dollar bet, in 2016 dollars, 

made by the United States without any assurance that the atomic bomb 
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would work, and the biggest secret was that it did work. Once the secret 

that multilayer networks could be trained using a Boltzmann machine 

was out, there was an explosion of new learning algorithms. At the same 

time that Geoffrey Hinton and I were working on the Boltzmann machine, 

David Rumelhart had developed another learning algorithm for multilayer 

networks that proved to be even more productive.2

Optimization

Optimization is a key mathematical concept in machine learning: for many 

problems, a cost function can be found for which the solution is the state 

Figure 8.1

David Rumelhart at the University of California, San Diego, around the time the 

two volumes of Parallel Distributed Processing were published in 1986. Rumelhart was 

influential in the technical development of learning algorithms for multilayer net-

works models and used them to help us understand the psychology of language and 

thinking. Courtesy of David Rumelhart.
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Box 8.1

Error Backpropagation

Inputs to the backprop network are propagated feedforward: In the diagram 

above, the inputs on the left propagate forward through the connections 

(arrows) to the hidden layer of units, which in turn project to the output 

layer. The output is compared with the value given by a trainer, and the differ-

ence is used to update the weights to the output unit to reduce the error. The 

weights between the input units and the hidden layer are then updated based 

on backpropagating the error according to how much each weight contributes 

to the error. By training on many examples, the hidden units develop selective 

features that can be used to distinguish between different input patterns so 

that they can be separated into different categories in the output layer. This is 

called “representation learning.”

Courtesy of Dr. Mahmoud.
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of the system with the lowest cost. In the case of the Hopfield net, the cost 

function is the energy, and the goal is to find a state of the network that 

minimizes it (as described in chapter 6). For a feedforward network, a popu-

lar cost function for learning is the summed squared error on the output 

layer of the training set. “Gradient descent” is a general procedure that 

minimizes a cost function by making incremental changes to the weights 

in the networks in the direction of greatest reduction to the cost.3 Think of 

the cost function as a mountain range and gradient descent as the path you 

take to ski the fastest way down a slope.

Rumelhart discovered how to calculate the gradient for each weight in 

the network by a process called the “backpropagation of errors,” or “back-

prop” for short (box 8.1). Starting on the output layer, where the error is 

known, it is easy to calculate the gradient on the input weights to the out-

put units. The next step is to use the output layer gradients to calculate the 

gradients on the previous layer of weights, and so on, layer by layer, all the 

way back to the input layer. This is a highly efficient way to compute error 

gradients.

Although it has neither the elegance nor the deep roots in physics that 

the Boltzmann machine learning algorithm has, backprop is more efficient, 

and it has made possible much more rapid progress. The classic backprop 

paper, coauthored by David Rumelart, Geoffrey Hinton, and Ronald Wil-

liams, appeared in Nature in 1986,4 and since then, it has been cited more 

than 40,000 times in other research papers. (Half the papers published never 

get a single citation, not even from their authors; a paper that receives even 

100 citations has made a significant impact on a field, so the backprop 

paper was clearly a blockbuster.)

NETtalk

At Princeton in 1984, I heard a talk by a graduate student, Charles Rosen-

berg, on the Boltzmann machine. Although usually the one giving this 

talk, I was impressed. Charlie asked if he could visit my lab to work on a 

summer project. By the time he arrived in Baltimore, we had switched to 

backprop, which made it possible for us to think about working on a real-

world problem rather than the toy demonstration problems I had worked 

on previously. Since Charlie was a student of George Miller, a legendary 

language expert, we looked around for a Goldilocks problem in language, 

one that was neither so difficult that we could not make headway on it 

nor so easy that known methods could solve the problem. Linguistics is 

a vast field with many subdisciplines: phonology, which concerns the 
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pronunciation of words; syntax, which studies how words are arranged in 

a sentence; semantics, which is about the meaning of words and sentences; 

and pragmatics, which studies how context contributes to the meaning 

of language—to name just a few. We decided to start with phonology and 

work our way up.

English is a particularly difficult language to pronounce because the 

rules are complex and have many exceptions. For example, vowels are 

mostly long if the final consonant of a word is followed by a silent “e,” such 

as “gave,” and “brave,” but there are exceptions, such as “have,” which 

behaves irregularly. I went to the library and found a book in which pho-

nologists had compiled hundreds of pages of these rules and exceptions. 

There were often rules within the exceptions and sometimes exceptions 

to these exceptional rules. In short, for linguists, it was rules “all the way 

down.”5 To make matters worse, not everyone pronounces a word the same 

way. There are many dialects, each with its own set of rules.

Geoffrey Hinton visited Charlie and me at Johns Hopkins during this 

early planning period and told us he thought that English pronunciation 

would be too hard to tackle. So we scaled back our ambitions and found a 

children’s first reading book that had a hundred words in it. The network 

we designed had a window of seven letters, each represented by twenty-

nine units including space and punctuation, for a total of 203 input units. 

The goal was to predict the sound of the middle letter in the window. The 

input units were connected to eighty hidden units, and the hidden units 

projected to twenty-six output units, one for each of the elementary sounds, 

called “phonemes,” that are found in English. We called our letter-to-sound 

network “NETtalk” (figure 8.2).6 There were 18,629 weights in the network, 

a large number by the standards of 1986, and impossibly large by the stan-

dards of mathematical statistics of the time. With that many parameters, 

we were told that we would overfit the training set, and the network would 

not be able to generalize.

As the words marched through the seven-letter window, one letter at a 

time, the network assigned a phoneme to the middle letter in the window. 

The part of the project that took the longest time was manually aligning 

the phoneme with the right letter since the number of letters was not the 

same as the number of phonemes in each word. In contrast, the learning 

took place before our eyes, getting better and better as the sentences cycled 

through the window, and when the learning converged, the performance 

of the network was almost perfect on the 100 word training set. Testing 

on new words was poor, but because generalization was expected to be 
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Figure 8.2

NETtalk feedforward network model. The seven groups of units on the bottom layer 

represent letters in a moving window through the text, one letter at a time. The goal 

of the network is to predict correctly the sound of the middle letter, which in this 

example is the hard “c” phoneme. Each unit on the input layer makes a connection 

with all of the hidden units, which in turn project to all of the units on the output 

layer. The backprop learning algorithm was used to train the weights using feedback 

from a teacher. The correct output pattern is compared with the output of the net-

work, which in this case is the incorrect “k” phoneme. Errors are backpropagated to 

the weights on earlier layers. 



Backpropagating Errors 115

low on such a small training set, this preliminary result was nonetheless 

encouraging.

We then used the 20,000-word Brown Corpus7 and assigned phonemes, 

as well as stress marks, to each of letters. The alignment of the letters and 

sounds took weeks, but, once the learning started, the network absorbed 

the whole corpus in a single night. But how well would it generalize? Beau-

tifully, it turned out. The network had discovered the regularities of English 

pronunciation and could recognize the exceptions, all with the same archi-

tecture and learning algorithm. Tiny by today’s standards, our network was 

a testament to how efficiently a backprop network could represent Eng-

lish phonology. This was our first hint that how neural networks learned 

language—the poster child for symbolic representations—dovetailed with 

how humans did.

As it acquired its ability to read aloud, NETtalk first went through a bab-

bling phase, in which it recognized the difference between consonants and 

vowels, but assigned the phoneme “b” to all the consonants and the pho-

neme “a” to all the vowels. It sounded like “ba ba” and then after more 

learning, it shifted to “ba ga da.” This was eerily similar to the way babies 

babble. Then it started to get small words right, and finally, toward the end 

of training, we could understand most words.

To test NETtalk on dialect, we found a phonological transcription of 

an interview with a young Latino boy from a barrio in Los Angeles. The 

trained network re-created the Spanish-accented English of the boy talking 

about how, when visiting his grandmother, he would sometimes get candy. 

I recorded segments during successive stages of learning by playing the out-

put of NETtalk into a speech synthesizer called “DECtalk” that converted 

a string of phoneme labels into audible speech. When I played this tape 

during a lecture, the audience was stunned—the network literally spoke for 

itself.8 This summer project exceeded all our expectations and stood out as 

the first real-world application of neural network learning. I appeared with 

NETtalk on the Today show in 1986, which was seen by a surprisingly large 

audience. Up to this point, neural networks had been an arcane academic 

subject. I still meet people who heard about neural networks for the first 

time when they watched the show.

Although NETtalk was a powerful demonstration of how a network 

could represent some aspects of language, it was not a good model for how 

humans acquire reading skills. First, we learn to talk before we learn to read. 

Second, we are given a few phonetic rules to help us jumpstart the difficult 

task of becoming proficient at reading out loud. But reading aloud quickly 

becomes fast pattern recognition, without the need for conscious effort 
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to apply rules. Most English speakers will pronounce nonsense words like 

“brillig,” “slithy,” and “toves” from Lewis Carroll’s “Jabberwocky” without 

effort, the same way they would normal words, as will NETtalk. These pseu-

dowords aren’t in any dictionary but trigger phonemes formed from related 

letter patterns in English.

NETtalk made a deep impression on audiences, but now Charlie Rosen-

berg and I needed to analyze the network to figure out how it worked. To do 

that, we applied cluster analysis to the activity patterns in the hidden units 

and discovered that NETtalk had discovered the same grouping of similar 

vowels and consonants that linguists had identified. Mark Seidenberg and 

James McClelland used a similar approach as a starting point for a detailed 

comparison with the sequence of stages that children go through when 

they learn how to read.9

NETtalk had an impact on the world in ways that no one could have 

anticipated. As a faculty member of the Thomas C. Jenkins Department 

of Biophysics at the Johns Hopkins University, I became interested in the 

problem of protein folding. Proteins are string of amino acids that fold up 

into complex shapes, endowing them with a wide range of functions, such 

as hemoglobin, which binds to oxygen in your red blood cells. Predicting 

the 3D shape of a protein from its amino acid sequence is a difficult com-

putational problem that is unsolved for most proteins even with the most 

powerful computers. However, there are motifs that are more predictable, 

called secondary structures, in which the amino acids wind up in the shape 

of a helix, a flat sheet, or a random coil. The algorithms being used by 

biophysicists took into account the chemical nature of the different amino 

acids, but their predictions were not good enough to help with the 3D fold-

ing problem.

Ning Qian was a first year graduate student in my lab who was one of 

the few chosen from all the physics students in China to come to the US 

for graduate studies in 1980. We wondered whether NETtalk could be used 

to take a string of amino acids and predict protein secondary structures, 

assigning alpha helix, a beta sheet, or a random coil to each amino acid. 

This is an important problem because the 3D structure of a protein deter-

mines its function. Instead of a string of letters, the input was a string of 

amino acids, and instead of predicting phonemes, the network predicted 

the secondary structure. The training set was 3D structures determined by 

x-ray crystallography. To our surprise, the secondary structure predictions 

for new proteins were far better than the best methods based on biophys-

ics.10 This landmark study was the first application of machine learning to 

molecular sequences, a field that is now called bioinformatics.
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Another network that learned how to form the past tense of English 

verbs became a cause célèbre in the world of cognitive psychology as the 

rule-based old guard battled it out with the avant-garde PDP Group.11 The 

regular way to form the past tense of an English verb is to add the suffix 

“ed,” as in forming “trained” from “train.” But there are irregular excep-

tions, such as “ran” from “run.” Neural networks have no problem accom-

modating both the rules and the exceptions. Although this is no longer an 

active debate, the fundamental question about the role of explicit repre-

sentation of rules in the brain remains open. Recent experiments on neural 

network learning of language support the gradual acquisition of inflec-

tional morphology, consistent with human learning.12 The success of deep 

learning with Google Translate and other natural language applications 

in capturing the nuances of language further supports the possibility that 

brains do not need to use explicit rules for language, even though behavior 

might suggest that they do.

Geoffrey Hinton, David Touretzky, and I organized the first Connection-

ist Summer School at Carnegie Mellon in 1986 (figure 8.3), at a time when 

Figure 8.3

Students at the 1986 Connectionist Summer School at Carnegie Mellon University. 

Geoffrey Hinton is in the first row, third from right, flanked by Terry Sejnowski and 

James McClelland. This photo is a who’s who in neural computing today. Neural 

networks in the 1980s were a bit of twenty-first-century science in the twentieth 

century. Courtesy of Geoffrey Hinton. 



118 Chapter 8

only a few universities had faculty who offered courses on neural networks. 

In a skit based on NETtalk, the students lined up in layers, with each stu-

dent representing a unit in the network (although they registered an error 

when they propagated the “j” in “Sejnowski” since it is pronounced like “y” 

and does not follow the English pattern). Many of those students went on 

to make important discoveries of their own and to forge major careers. A 

second summer school was held at Carnegie Mellon in 1988 and a third at 

UC, San Diego, in 1990. It takes a generation for new ideas to get into the 

mainstream. These summer schools were intense experiences and the best 

investment we could make in the early days to promote the field.

Neural Networks Reborn

The two volumes of Parallel Distributed Processing (PDP), the now classic 

book edited by Rumelhart and McClelland, were published in 1986. It was 

the first book to lay out the implications of neural networks and multilayer 

learning algorithms for understanding mental and behavioral phenom-

ena. It sold more than 50,000 copies, a best seller by academic standards. 

Not only did neural networks trained by backprop have hidden units with 

properties resembling those of cortical neurons in the visual system;13 the 

breakdown patterns exhibited by these networks also had much in com-

mon with human deficits following brain damage.14

Francis Crick was a member of the PDP Group and came to most of 

the group’s meetings and seminars. In the debate on how “biological” the 

parallel distributed processing models were, he took the position that they 

should be considered demonstrations rather than literal models of the 

brain. He wrote a chapter for the PDP book on what was then known about 

the cerebral cortex. I wrote a chapter that summarized what we did not 

know about the cerebral cortex. If those chapters were written today, both 

would be much longer.

There are success stories from the 1980s that are not generally known. 

One of the most profitable companies based on neural networks was HNC 

Software, Inc., founded by Robert Hecht-Nielsen, which used neural net-

works to prevent credit card fraud. Hecht-Nielsen was in the Electrical and 

Computer Engineering Department at UC, San Diego, and taught a popular 

course on practical applications of neural networks. Every day, credit cards 

are compromised by cybercriminals across the globe. Credit card transac-

tions feed into a roaring river of data, and picking out the suspicious ones 

is a daunting task. In the 1980s, humans made the time-sensitive decisions 

of whether to approve or deny a given credit card transaction. This led to 
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more than $150 billion of fraudulent transactions per year. HNC Software 

Inc. used neural network learning algorithms to detect credit card fraud 

with much better accuracy than humans, saving credit card companies 

many billions of dollars per year. HNC was acquired for $1 billion by Fair 

Isaac and Company (FICO) in 2002, famous for issuing credit scores.

There is something magical about watching a network learn as it gets 

better and better by taking small steps. It can be a slow process, but if there 

are enough training examples and the network is big enough, learning algo-

rithms can find a good representation that generalizes well to new inputs. 

When the process is repeated from a randomly chosen set of initial weights, 

a different network is learned each time, but all with similar performances. 

Many networks can solve the same problem; this has implications for what 

we should expect when we are able to reconstruct the complete set of con-

nections for the brains of different individuals. If many networks yield the 

same behavior, the key to understanding them is the learning algorithms 

used by brains, which should be easier to discover.

Understanding Deep Learning

Whereas, in convex optimization problems, there are no local minima and 

convergence is guaranteed to the global minimum, in nonconvex optimi-

zation problems, this is not the case. We were told by optimization experts 

that, because learning in networks with hidden units was a nonconvex 

optimization problem, we were wasting our time—our network would get 

trapped in local minima (figure 8.4). Empirical evidence suggested that 

they were wrong. But why? We now know that, in very high-dimensional 

spaces, local minima of the cost function are rare until the final stages of 

learning. At early stages, almost all directions are downhill, and, on the way 

down, there are saddle points, where some directions point up in error and 

other dimensions point down. The intuition that networks would get stuck 

in local minima is based on solving problems in low-dimensional spaces 

where there are fewer directions to escape.

Current deep network models have millions of units and billions of 

weights. For statisticians, who traditionally analyze simple models with 

only a few parameters so they can prove theorems using small data sets, a 

billion-dimensional space was a nightmare. They assured us that, with so 

many parameters, we would hopelessly overfit the data: our network would 

simply memorize the training data and fail to generalize to new test inputs. 

But using regularization techniques, like forcing the weights to decay when 

they weren’t doing anything useful, we were able to alleviate overfitting. 
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One particularly clever regularization technique, called “dropout,” was 

invented by Geoffrey Hinton.15 On every learning epoch, when the gradi-

ent is estimated from a number of training examples and a step is made in 

weight space, half the units are randomly cut out from the network—which 

means that a different network is trained on every epoch. As a consequence, 

there are fewer parameters to train on each epoch, and the resulting network 

has fewer dependencies between units than would be the case if the same 

large network were trained on every epoch. Dropout decreases the error rate 

in deep learning networks by 10 percent, which is a large improvement. In 

2009, Netflix conducted an open competition, offering a prize of $1 mil-

lion to the first person who could reduce the error of their recommender 

system by 10 percent.16 Almost every graduate student in machine learning 

entered the competition. Netflix probably inspired $10 million of research 

for the cost of the prize. And deep networks are now a core technology for 

online streaming.17

Intriguingly, cortical synapses drop out at a high rate. On every spike 

along an input, the typical excitatory synapse in the cortex has a 90 percent 

failure rate.18 This is like a baseball team where almost all the players are bat-

ting .100. How can the brain function reliably with such unreliable cortical 

synapses? When there are thousands of probabilistic synapses on a neuron, 

the variability of their summed activity is relatively low,19 which means 

Figure 8.4

Nonconvex and convex cost functions. These graphs plot cost functions, J(θ), as a 

function of a parameter θ. A convex function has only one minimum (right), a global 

minimum that can be reached by moving downhill from any location on the surface. 

Imagine you are a skier and always point your skis in the steepest downhill direction. 

You are guaranteed to get to the bottom. In contrast, a nonconvex cost function can 

have local minima (left), which are traps that prevent the global minimum from be-

ing found by going downhill. As a consequence, nonconvex cost functions are diffi-

cult to optimize. However, this one-dimensional example is misleading. When there 

are many parameters (typically millions in a neural network), there can be saddle 

points, which are convex up in some dimensions and concave down in others. When 

you are at a saddle, there is always a direction to go downhill. 
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performance may not be degraded as much as you might imagine. The 

benefit for learning with dropout at the level of synapses may outweigh the 

cost in reduced accuracy. And since synapses take a lot of energy to operate, 

dropout also saves energy. Finally, because the cortex uses probabilities to 

compute likely—not certain—outcomes, using probabilistic components is 

an efficient way to represent a probability.

However unreliable they may be, cortical synapses are surprisingly pre-

cise in their strength. The sizes of cortical synapses and their corresponding 

strengths vary over a factor of 100, and the strengths of single synapses 

can be increased or decreased within this range. Working with Kristen Har-

ris, a neuroanatomist at the University of Texas at Austin, my lab recently 

reconstructed a small piece of the rat hippocampus, a brain area needed for 

forming long-term memories, which contained 450 synapses. Most axon 

formed a single synapse on a dendritic branch, but in a handful of cases, 

two synapses from a single axon contacted the same dendrite. To our sur-

prise, these were nearly identical in size; from previous studies, we knew 

this meant they had the same strength. Much is known about the condi-

tions that lead to changes in the strengths of these synapses, which depend 

on the history of input spikes and the corresponding electrical activity of 

the dendrite, which was the same for the pair of synapses from the same 

axon on the same dendrite. From these observations, we inferred that the 

precision with which information is stored in the strengths of synapses 

is high, enough to store at least five bits of information.20 That learning 

algorithms for deep recurrent networks need only five bits to achieve high 

levels of performance may not be a coincidence.21

The dimensionality of networks in the brain is so high that we do not 

even have a good estimate of how high. The total number of synapses in 

the cerebral cortex is around a hundred trillion, an astronomically high 

upper bound. A human lifetime is no more than a few billions seconds 

long. At that rate, you could afford to dedicate a hundred thousand syn-

apses to each second of your life. In practice, neurons tend to have clustered 

local connections, such as those within a cortical column of one hundred 

thousand neurons connected by a billion synapses. Although this is still a 

large number, it is not an astronomical one. Long-range connections are 

much less common than local connections because neural wires take up 

precious volume and consume a lot of energy.

The number of neurons that represent an object or concept in the cortex 

is an important number to pin down. A rough estimate for the number of 

synapses needed is about a billion, and the number of neurons needed is 

about one hundred thousand, distributed in ten cortical areas,22 allowing 
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some 100,000 separate, noninterfering classes of objects and concepts to 

be stored in 100 trillion synapses. In practice, the populations of neurons 

representing similar objects are overlapping, which can greatly increase the 

capacity of the cortex to represent related objects and relationships between 

objects. This capacity is much greater in humans than in other mammals 

because of the extraordinary expansion of the associative cortex (at the top 

of the sensory and motor hierarchies) in the human brain over the course 

of evolution.

The study of probability distributions in high-dimensional spaces was 

a relatively unexplored area of statistics in the 1980s. There were a few 

statisticians who studied the statistical issues that arise when navigating 

high-dimensional spaces and high-dimensional data sets, like Leo Breiman 

from Stanford, who found a home in the Neural Information Processing 

Systems (NIPS) community. And some from that community, like Michael 

Jordan at UC, Berkeley, were recruited to statistics departments. But, for the 

most part, machine learning in the era of big data has trod where statisti-

cians feared to go. But it is not enough that we can train large networks to 

do amazing things; we also need to analyze and understand how they do 

these things. Physicists have taken the lead on this front, using methods 

from statistical physics to analyze the properties of learning as the number 

of neurons and synapses becomes ever larger.

At the 2017 NIPS Conference in Long Beach, the Test of Time award 

was given to Benjamin Recht at UC Berkeley and Ali Rahimi at Google for 

their 2007 NIPS paper,23 which showed that random features can be an 

effective way to improve the performance of networks with one layer of 

learned weights, something that Frank Rosenblatt knew empirically for the 

perceptron in 1960. The presentation after the award given by Rahimi was 

an impassioned defense of rigor in machine learning, and he lamented the 

lack of rigor in deep learning, which he derisively referred to as “alchemy.” 

I was sitting next to Yann LeCun, who was fuming. In a blog after the 

talk Yann wrote: “Criticizing an entire community (and an incredibly suc-

cessful one at that) for practicing ‘alchemy,’ simply because our current 

theoretical tools haven’t caught up with our practice is dangerous. Why 

dangerous? It’s exactly this kind of attitude that lead the ML community 

to abandon neural nets for over 10 years, despite ample empirical evidence 

that they worked very well in many situations.”24 This is a classic scrim-

mage between the scruffy and neat approaches to science. Both are needed 

to make progress.
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Limitations of Neural Networks

Although they may give the right answer to a problem, currently, there is 

no way to explain how neural networks arrive at that answer. For example, 

suppose that a female patient presents in an emergency room with a sharp 

pain in her chest. Is this a myocardial infarction, in which case immedi-

ate intervention is needed, or simply a bad case of indigestion? A network 

trained to make a diagnosis might be more accurate than the admitting 

doctor, but without an explanation for how the network made the deci-

sion, we would be justifiably reluctant to trust it. Doctors also are trained to 

follow what amounts to algorithms, series of tests and decision points that 

guide them through routine cases. The problem is that there are rare cases 

that fall outside the scope of their “algorithms,” whereas a neural network 

trained on many more cases, far more than the average doctor will ever see 

in a lifetime, might well catch those rare cases. But would you trust the sta-

tistically stronger diagnosis of a neural network with no explanation over 

a doctor’s diagnosis with a plausible one? In fact, those doctors who are 

highly accurate in making a rare diagnosis have had broad experience, and 

most use pattern recognition rather than algorithms.25 This is probably so 

for the highest-level experts in all fields.

Just as it is possible to train networks to give expert diagnosis, would it 

be possible to train networks to give explanations by making them part of 

their training sets? This might even improve the diagnosis. The reason this 

is problematic is that many of the explanations doctors give are incomplete, 

oversimplified, or wrong. Medical practice changes dramatically from one 

generation to the next because the complexity of the body greatly exceeds 

our current understanding. If we could analyze the internal states of net-

work models to extract causal explanations, this could lead to new insights 

and hypotheses that could be tested to advance medicine.

The objection that a neural network is a black box whose conclusions 

cannot be understood can also be made of brains, and, indeed, there is 

great variability in the decisions made by individuals given the same data. 

We really don’t know yet how brains draw inferences from experience. As 

shown in chapter 3, conclusions are not always based on logic, and there 

are cognitive biases.26 Moreover, the explanations we accept are often noth-

ing more than rationalizations or plausible stories. We cannot exclude the 

possibility that some very large generative network will someday start talk-

ing, and we can ask it for explanations. Should we expect better stories and 

rationalizations from such a network than those we receive from humans? 

Recall that consciousness does not have access to the inner workings of 
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brains. Deep learning networks typically provide not one but several lead-

ing predictions in rank order, which gives us some information about the 

confidence of a conclusion. Supervised neural networks can only solve 

problems that fall within the range of data that were used to train the net-

work. If it has been trained on similar cases or examples, a neural network 

should do a fine job at interpolating to novel cases. But if a novel input is 

outside the range of training data, extrapolation is perilous. This should 

come as no surprise since the same limitation applies to humans; an expert 

in physics should not be expected to give good advice on political issues, or 

even in an area of physics outside the expert’s expertise. But, as long as the 

data set is big enough to encompass the full range of potential inputs, a net-

work’s generalization to new inputs should be good. In practice, humans 

tend to use analogies to extrapolate from an understood domain to a new 

domain, but these can turn out to be false analogies if the two domains are 

fundamentally different.

All neural networks that classify inputs are biased. First, the choice of 

classification categories introduces a bias that reflects human bias in how 

we chop up the world. For example, it would be useful to train a network 

to detect weeds in lawns. But what is weed? One man’s weed is another 

man’s wildflower. Classification is a much broader problem that reflects 

cultural biases. This ambiguity is compounded by the data sets that are used 

to train the network. For example, several companies provide law enforce-

ment agencies with systems that identify criminals based on facial recogni-

tion. There are more false positives among the black faces than white faces 

because the databases used to train the networks have many more white 

faces, and the more data you have the more accurate you can be.27 Database 

biases can be corrected by rebalancing the data, but there are inevitably 

hidden biases depending on where the data are obtained and what they are 

used to decide.28

Another objection to reliance on neural networks is that they may 

optimize profits at the expense of fairness. For example, suppose that an 

underrepresented minority applies for a home mortgage and is denied the 

loan by a neural network that has been trained on millions of applications. 

Inputs to the network include current address and other information that 

are highly correlated with being a minority. So even though there is a law 

against explicitly discriminating against minorities, the network may be 

using this information to implicitly discriminate against them. The prob-

lem here is not with the neural network, but with the cost function we 

gave it to optimize. If profit is the only goal, the network will use whatever 

information it is given to maximize profit. The solution to this problem is 
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to incorporate fairness as another term in the cost function. Although the 

optimal solution would be a judicious balance between profit and fairness, 

the trade-off must be made explicit in the cost function, which requires 

that someone decide how to weight each goal. The ethical perspective of 

those in the humanities and social sciences should inform these trade-offs. 

But we must always keep in mind that choosing a cost function that seems 

fair may have unintended consequences.29

Calls to regulate the use of AI have come from Elon Musk and Stephen 

Hawking as well as legislators and researchers. An open letter signed by 

3,722 AI and robotics researchers in 2015 called for a ban on autonomous 

weapons:

In summary, we believe that AI has great potential to benefit humanity in many 

ways, and that the goal of the field should be to do so. Starting a military AI arms 

race is a bad idea, and should be prevented by a ban on offensive autonomous 

weapons beyond meaningful human control.
30

 

This call for a ban was well meaning but could boomerang. Not all  

nations may buy into the ban. Russian President Vladimir Putin is on 

record:

Artificial intelligence is the future, not only for Russia, but for all humankind.  

It comes with colossal opportunities, but also threats that are difficult to  

predict. Whoever becomes the leader in this sphere will become the ruler of the 

world.
31

The problem with wholesale bans is that AI is not a monolithic field, but 

one that has many diverse tools and applications, each of which has its 

own consequences. For example, the automation of credit scoring was an 

early application of machine learning in the 1980s. There were concerns 

that individuals would be unfairly scored if they happened to live in the 

wrong zip code. This led to legislation to put limits on what information 

was used to compute the scores and companies were required to inform an 

individual on ways to improve their score. Each application will have a dif-

ferent set of issues that are best handled on a case-by-case basis rather than 

a blanket ban on research.32

Passages

While on sabbatical at Caltech in 1987 as the Cornelis Wiersma Visiting 

Professor of Neurobiology, I visited Francis Crick at the Salk Institute. Fran-

cis was building a research group that was especially strong in vision, one 

of my special interests. I played my NETtalk demo tape at a faculty lunch, 
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which opened up a lively discussion. My move to La Jolla in 1989 marked 

an exciting transition from junior faculty at Johns Hopkins to senior fac-

ulty at the Salk Institute, and almost overnight many opportunities opened 

up, including an appointment with the Howard Hughes Medical Institute, 

which provided generous support for my research for twenty-six years.

When I moved to UC, San Diego, in 1989, I was sorry that David Rumel-

hart, who taught us how to backpropagate, had already left for Stanford, 

and I only saw him sporadically after that. Over the years, I noticed that 

David’s behavior changed in ways that were disturbing. Eventually, he was 

diagnosed with frontotemporal dementia, a progressive loss of neurons in 

the frontal cortex that affects personality, behavior, and language. Rumel-

hart died in 2011 at age 68, no longer able to recognize family or friends.



By 2000, the neural network fever from the 1980s had broken, and neural 

networks became normal science again. Thomas Kuhn once characterized 

the time between scientific revolutions as the normal work of scientists 

theorizing, observing, and experimenting within a settled paradigm 

or explanatory framework.1 Geoffrey Hinton moved to the University 

of Toronto in 1987 and continued with a steady stream of incremental 

improvements, although none of them had the magic that the Boltzmann 

machine once held for us. Hinton became the leader of the Neural Com-

putation and Adaptive Perception (NCAP) Program at the Canadian Insti-

tute for Advanced Research (CIFAR) in the first decade of the new century, 

which consisted of around twenty-five researchers from Canada and other 

countries who were focused on solving difficult problems with machine 

learning. I was a member of the NCAP Advisory Board, chaired by Yann 

LeCun, and attended the program’s annual meetings just before the NIPS 

conferences. Making slow but steady progress, the neural network pioneers 

explored many new strategies for machine learning. Although their net-

works had many useful applications, the high expectations for the field 

in the 1980s had not been fulfilled. This did not deter the pioneers from 

keeping the faith, however. In retrospect, they were setting the stage for a 

dramatic breakthrough.

Steady Progress in Machine Learning

The NIPS conferences were the incubator for neural networks in the 1980s 

and opened the door for other algorithms that could handle large, high-

dimensional data sets. Vladimir Vapnik’s Support Vector Machine (SVM)

burst on the scene in 1995 to open up a new chapter in perceptron net-

works, left for dead in the 1960s. What made the SVM a powerful classifier, 
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now in every networker’s toolkit, was the “kernel trick,” a mathematical 

transformation that is the equivalent of jumping from data space to hyper-

space, where the data points are remapped to make them easier to separate. 

Tomaso Poggio had developed a hierarchical network called “HMAX” that 

could classify a limited number of objects.2 This suggested that performance 

would improve with deeper networks.

In the first years of the new century, graphical models were developed 

that made contact with a rich vein of probabilistic models called “Bayes 

networks,” based on a theorem formulated by the eighteenth-century Brit-

ish mathematician Thomas Bayes that allows new evidence to update prior 

beliefs. Judea Pearl at the University of California, Los Angeles, had earlier 

introduced “belief networks”3 to artificial intelligence based on Bayesian 

analysis, which were strengthened and extended by developing methods 

for learning the probabilities in the networks from data. The algorithms of 

these and other networks built up a powerful armamentarium for machine 

learning researchers.

As the processing capability of computers continued to rise exponen-

tially, it became possible to train ever larger networks. It was generally 

thought that wider neural networks with a greater number of hidden units 

were more effective than deeper networks with a greater number of layers, 

but this was shown not to be the case for networks trained layer by layer,4 

and the vanishing error gradient problem was identified, which slowed 

down learning near the input layer.5 When this problem was eventually 

overcome, however, it became possible to train deep backprop networks 

that performed favorably on benchmarks.6 And, as deep backprop networks 

began to challenge traditional approaches in computer vision, the word at 

the 2012 NIPS Conference was that the “Neural” was back in “Neural Infor-

mation Processing Systems.” 

In computer vision, steady progress in recognizing objects in images 

over the last decade of the previous century and the first decade of the 

current one had improved performance on benchmarks (used to compare 

different methods) by a fraction of a percent per year. Methods improved 

slowly because each new category of objects requires a domain expert to 

identify the pose-invariant features needed to distinguish them from other 

objects. Then, in 2012, Geoffrey Hinton and two students, Alex Krizhevsky 

and Ilya Sutskever, submitted a paper to the NIPS conference on object rec-

ognition in images that used deep learning to train AlexNet, a deep convo-

lutional network that will be the focus of this chapter.7 Using the ImageNet 

database of more than 15 million labeled high-resolution images in more 

than 22,000 categories as benchmark, AlexNet achieved an unprecedented 
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reduction in the error rate of 18 percent.8 This leap forward in performance 

sent a shock wave through the computer vision community, setting devel-

opment of ever larger networks on a course of accelerated progress that is 

now reaching human levels of performance. By 2015, the error rate on the 

ImageNet database had fallen to 3.6 percent.9 The deep learning network 

that Kaiming He and colleagues used to achieve this low rate in many 

ways resembles the visual cortex; it was introduced by Yann LeCun, who 

originally called it “Le Net.”

A student in France when Geoffrey Hinton and I first met him in the 

1980s, Yann LeCun (figure 9.1, right) was inspired by HAL 9000, the mis-

sion computer in the epic 1968 science fiction film 2001: A Space Odyssey, 

to pursue artificial intelligence when he was nine years old. He had inde-

pendently discovered a version of backpropagation for his doctoral disserta-

tion in 1987,10 after which he moved to Toronto, to work with Geoffrey. He 

later moved to AT&T Bell Laboratories in Holmdel, New Jersey, where he 

trained a network that could read handwritten zip codes on letters, using 

the Modified National Institute of Standards and Technology (MNIST) 

Figure 9.1

Geoffrey Hinton and Yann LeCun have mastered deep learning. This photo was 

taken at a meeting of the Neural Computation and Adaptive Perception Program of 

the Canadian Institute for Advanced Research around 2000, a program that was an 

incubator for what became the field of deep learning. Courtesy of Geoffrey Hinton.
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database, a labeled data benchmark. Millions of letters each day have to 

be routed to mailboxes; today this is fully automated. The same technol-

ogy also made it possible to read automatically the amount on your bank 

check at ATM machines. Interestingly, the hardest part is locating where on 

the check the numbers are written since each check has a different format. 

It was already apparent back in the 1980s that Yann had an extraordinary 

talent for taking proofs of principle (something academics are good at) and 

making them work in the real world. This requires the products to be battle 

tested and robust.

Convolutional Neural Networks

When Yann LeCun moved to New York University in 2003, he continued 

to evolve his vision network, which is now known as the “ConvNet” (figure 

9.2). The fundamental building block of the network is based on convolu-

tion, which can be thought of as a small sliding filter that is passed over the 

image, creating a layer of features across the image. For example, the filter 

could be an oriented edge detector such as those introduced in chapter 

5, which has a large output only when the window is over an edge of an 

object in an image in the correct orientation or texture with that orienta-

tion within an object. Although the window on the first layer is only a 

small patch of the image, since there can be many filters, many features 

can be represented in every patch. The filters in the first layer that is con-

volved with the image are similar to what David Hubel and Torsten Wiesel 

called “simple cells” in the primary visual cortex (figure 9.3).11 The filters in 

higher layers respond to even more complex features.12

In early versions of ConvNet, the output of each filter was passed through 

a nonlinearity, called a “sigmoid function,” that smoothly increased from 

0 to 1, suppressing the output of weakly activated units (see the sigmoid 

function in box 7.2). The window in the second layer that received inputs 

from the first layer covered a larger region of the visual field, so that after 

several more layers, there were units that received inputs from the entire 

image. This top layer was analogous to the top of the visual hierarchy, 

which in primates is called the “inferotemporal cortex” and has receptive 

fields that cover most of the visual field. The top layer was then fed into a 

classification layer, connected all-to-all, which was used to train the entire 

network to classify an object in the image using backprop.

Many incremental improvements were made to ConvNet over the years. 

An important addition was to aggregate each feature over a region, called 

“pooling.” This provides a measure of translation invariance and is similar 
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Figure 9.2

Visual cortex compared with a convolutional network for object recognition in  

images. (Top) (a, b) Hierarchy of layers in the visual cortex starting with inputs to 

primary visual cortex (V1) from the retina and thalamus (RGC, LGN) to the inferior 

temporal cortex (PIT, CIT, AIT) showing a correspondence between cortical areas 

and the layers of convolutional network. (Bottom) (c) Inputs from the image on the 

left project to the first convolutional layer, which consists of several feature planes, 

each representing a filter like the oriented simple cells found in the visual cortex. 

The filters are thresholded and pooled across the first layer and normalized to pro-

duce invariant responses across the patch similar to the complex cells in the visual 

cortex (box: Operations in linear-nonlinear layer). This operation is repeated on each 

convolutional layer of the network. The output layer has all-to-all connectivity with 

inputs from last convolutional layer. From Yamins and DiCarlo, “Using Goal-Driven 

Deep Learning Models to Understand Sensory Cortex,” figure 1.

to the complex cells discovered by Hubel and Wiesel in the primary visual 

cortex, which respond to lines with the same orientation throughout a 

patch of the visual field. Another useful operation was gain normalization, 

which adjusts the amplification of the inputs so that each unit is working 

within its operating range, something that is implemented in the cortex by 

feedback inhibition. The sigmoid output function also was replaced by rec-

tified linear units (ReLUs), which have zero output up to a sharp threshold 

and increase linearly above threshold. This has the advantage that units 



132 Chapter 9

below threshold are effectively cut out of the network, which is closer to 

how the threshold of a real neuron works.

Each of the changes to ConvNet had a computational justification that 

improved the performance of the network in ways that an engineer could 

understand, but with these changes, it came to resemble more and more 

closely what we knew about the architecture of the visual cortex in the 

1960s, even though at the time we could only guess what the functions 

of simple and complex cells were, or what the distributed representations 

at the top of the hierarchy were meant to accomplish. This illustrates the 

potential for fruitful symbiotic relationships between biology and deep 

learning.

Deep Learning Meets the Visual Hierarchy

A philosopher of the mind, Patricia Churchland specializes in neurophi-

losophy at UC, San Diego.13 That knowledge ultimately depends on how 

the brain represents knowledge clearly has not stopped philosophers from 

thinking about knowledge as, in the words of Immanuel Kant, a “Ding 

an sich” (thing in itself), something independent of the world. But, just 

as clearly, grounded knowledge is essential if we (among other animals) 

are to survive in the real world. Motivated by the remarkable similarity 

in the patterns of activity among the hidden units of a trained multilayer 

Figure 9.3

Filters from the first layer of a convolutional network. Each filter is localized to a 

patch in the visual field. The preferred stimuli of the filters in the top three rows are 

oriented like simple cells in the visual cortex. The preferred stimuli on the second 

layer shown in the bottom three rows are more extended and have complex shapes. 

From Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep Con-

volutional Neural Networks,” figure 3.
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neural network and those recorded from populations of biological neu-

rons recorded one at a time, Patricia and I wrote The Computational Brain 

in 1992 to develop a conceptual framework for neuroscience based on 

large populations of neurons.14 (Now in its second edition, our book is 

a good primer if you want to learn more about brain-style computing.) 

James DiCarlo at MIT recently compared the responses of neurons at dif-

ferent levels of the visual cortex hierarchy of monkeys trained to recognize 

images of objects with the responses of units in a deep learning neural 

network that could recognize the same images (figure 9.2).15 He concluded 

that the statistical properties of the neurons in each layer of the deep 

learning network matched quite closely those of neurons in the cortical  

hierarchy.

The similarity between the performances of units in a deep learning 

network and those of neurons in the monkey’s visual cortex is a puzzle, 

especially because the monkey’s brain is unlikely to be using backprop 

for learning. Backprop requires the feedback of detailed error signals to 

each neuron in each layer of a neural network with much greater preci-

sion than that found in known feedback connections of biological neu-

rons. But other learning algorithms are more biologically plausible, such 

as the Boltzmann machine learning algorithm, which uses Hebbian synap-

tic plasticity that has been found in the cortex. This raises an interesting 

question of whether there is a mathematical theory of deep learning that 

applies to a large class of learning algorithms including those in the cortex. 

In chapter 7, I alluded to the disentangling of classification surfaces in the 

upper layers of the visual hierarchy, where the decision surfaces are flatter 

than those in lower layers. A geometric analysis of the decision surface 

may lead to a deeper mathematical understanding of both deep learning 

networks and the brain.

One of the advantages of a deep learning neural network is that we can 

“record” from every unit in the network and follow the flow of information 

as it is transformed from layer to layer. Strategies for the analysis of such a 

network could then be applied to analyzing neurons in the brain. One of 

the wonderful things about a technology that works is that there usually is 

both a good explanation behind the technology and a strong incentive to 

figure that explanation out. The first steam engines were built by engineers 

following their intuitions; the theory of thermodynamics that explained 

how the engines worked came later, along with improvements in their effi-

ciency. The analysis of deep learning networks by physicists and mathema-

ticians is well under way.
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Working Memory and Persistence of Activity

Neuroscience has come a long way since the 1960s, and much can be gained 

from our current knowledge of the brain. In 1990, Patricia Goldman-Rakic 

taught a monkey to remember a location that was briefly cued with a light 

and to make an eye movement to the remembered location after a delay 

period.16 Recording from the monkey prefrontal cortex, she reported that 

some neurons that initially responded to the cue maintained their activ-

ity during the delay period. Psychologists call this “working memory” in 

humans, which is how we can keep 7 ± 2 items in mind while we are in the 

middle of performing a task, like dialing a phone number.

The traditional feedforward network propagates inputs up the net-

work, one layer at a time. Incorporating working memory would make 

it possible for a later input to interact with the trace left behind from a 

previous input to the network. For example, when translating a French 

sentence into English, the first French word into the network influences 

the order of subsequent English words. The simplest way to implement 

working memory in a network is to add recurrent connections, which are 

common in the human cortex. Recurrent connections in neural networks 

within a layer and feedback connections to previous layers allow tempo-

ral sequences of inputs to be temporally integrated. Such networks were 

explored in the 1980s and are used extensively in speech recognition.17 In 

practice, this works well for short-range dependencies, but poorly when the 

gap between inputs is large since the influence of an input tends to decay  

with time.

In 1997, Sepp Hochreiter and Jürgen Schmidhuber found a way to 

overcome the decay problem, which they called “long short-term mem-

ory” (LSTM).18 LSTM passes the activity into the future without decay as 

a default, which is what happens during the delay period in the monkey 

prefrontal cortex, and it also has a complex scheme for deciding how to 

integrate the new incoming information with the old information. As a 

consequence, long-range dependencies are preserved selectively. This ver-

sion of working memory in neural networks lay dormant for twenty years 

until it was awakened and implemented in deep learning networks, where 

it has been spectacularly successful in many domains that depend on learn-

ing sequences of inputs and outputs, such as movies, music, movements, 

and language.

Schmidhuber is a codirector of the Dalle Molle Institute for Artificial 

Intelligence Research in Manno, a tiny town located in the Ticino district 
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of southern Switzerland, near some of the best hikes in the Alps.19 This cre-

ative and idiosyncratic Rodney Dangerfield of neural networks is convinced 

he doesn’t get enough credit for his creativity. Thus, at a panel discussion 

at the 2015 NIPS Conference in Montreal, he introduced himself from the 

audience as “You again, Schmidhuber,” and, at the 2016 NIPS Conference 

in Barcelona, he harassed a tutorial speaker for five minutes for not paying 

enough attention to his ideas.

In 2015, Kelvin Xu and colleagues coupled a deep learning network for 

identifying objects in images with a long short-term memory recurrent net-

work to caption pictures. Using a first pass from a deep learning network 

that identified all the objects in the scene as input, they trained the recur-

rent LSTM network to output a string of English words that described the 

scene in a caption (figure 9.4). And they also trained the LSTM network 

to identify the location in the image corresponding to each word in the 

caption.20 What makes this application impressive is that the long short-

term memory network was never trained to understand the meaning of 

the sentence in the caption, only to output a syntactically correct string of 

words based on the objects and their locations in the image. Together with 

the earlier NETtalk example in chapter 8, this is more evidence that neural 

networks seem to have an affinity for language for reasons we do not yet 

understand. Perhaps a new theory of language will emerge from analyzing 

LSTM networks that will illuminate both how the networks work and the 

nature of natural language.

Generative Adversarial Networks

In chapter 7, the Boltzmann machine was presented as a generative model 

that can produce new input samples when the output is clamped to a 

category that it has been trained to recognize and the activity patterns 

percolate down to the input layer. Ian Goodfellow, Yoshua Bengio and 

their colleagues at the University of Montreal showed that it was possi-

ble to train feedforward networks to generate even better samples in an 

adversarial context.21 A generative convolutional network can be trained 

to produce good image samples by trying to fool another convolutional 

network that has to decide whether an input is a real image or a fake one. 

The output of the generative network is given as input to a discrimina-

tive convolutional network that is trained to give a single output: 1 if the 

input is a real image, and 0 if it is a fake image. These two networks com-

pete against each other. The generative network tries to increase the error 



Figure 9.4

Picture captioning with deep learning. The upper panel illustrates the procedure 

that analyzes the photo. The ConvNet (CNN) in the first step labels the objects in 

the photo and passes this on to the recurrent neural network (RNN). The RNN was 

trained to output an appropriate string of English words. The bottom four panels 

illustrate a further refinement that uses attention (white cloud) to indicate the refer-

ent of the word in the photo. Top: From M. I. Jordan and T. M. Mitchell, “Machine 

Learning: Trends, Perspectives, and Prospects,” Science 349, no. 6245 (2015): 255–

260, figure 2. Courtesy of Tom Mitchell. Bottom: From Xu et al., “Show, Attend and 

Tell,” 2015, rev. 2016, figures 1 and 3, https://arxiv.org/pdf/1502.03044.pdf. Cour-

tesy of Kelvin Xu.
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rate of the discriminative network, which is trying to reduce its error rate. 

The tension between these two goals produces astonishing photorealistic 

images (figure 9.5).22

Keep in mind that these generated images are synthetic and the objects in 

them never existed. They are generalized versions of the unlabeled images 

in the training set. Note that generative adversarial networks are unsuper-

vised, which makes it possible for them to use unlimited data. There are 

many other applications for these networks ranging from cleaning up noise 

in astronomical images of galaxies with superresolution23 to learning repre-

sentations of emotional speech.24

By slowly changing the input vector of the generative network, it is  

possible to gradually shift the image, so that parts and pieces, like windows, 

gradually appear or morph into other objects, like cabinets.25 Even more 

remarkably, it is possible to add and subtract vectors representing the state 

of the network to obtain mixtures of objects in the image, as illustrated in 

figure 9.6. The implication of these experiments is that the representations 

of images in the generative network represent rooms much the way we 

would describe the parts of scenes. This technology is advancing rapidly, 

and its next frontier is to generate realistic movies. By training a recur-

rent generative adversarial network against movies of an actor like Mari-

lyn Monroe, it should be possible to create new performances of actors no  

longer alive.

It is fashion week in Milan and models with otherworldly expressions 

are on the runways with striking struts (figure 9.7). Something is stirring in 

the fashion world: “‘Many jobs are vanishing,’ Silvia Venturini Fendi said 

before her show: ‘Androids will take the old jobs, but the only thing that 

they can’t replace is our creativity and our minds.’”26 Now imagine genera-

tive adversarial networks that have been trained to generate new styles and 

haute couture with almost endless variety. The world of fashion may be on 

the brink of a new era, along with many other businesses that depend on 

creativity.

It’s All about Scaling

Most of the current learning algorithms were discovered more than  

twenty-five years ago, so why did it take so long for them to have an 

impact on the real world? With the computers and labeled data that were 

available to researchers in the 1980s, it was only possible to demonstrate 

proof of principle on toy problems. Despite some promising results, we 

did not know how well network learning and performance would scale as 
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Figure 9.6

Vector arithmetic in generative adversarial networks. Mixtures of inputs to a genera-

tive network trained on faces produced the outputs on the left, which were then used 

to create the blends on the right by adding and subtracting the chosen input vectors. 

Because the blends are done at the highest representational level, parts and poses are 

seamlessly combined, rather than averaged as occurs in morphing. Adapted from 

A. Radford, L. Metz, and S. Chintala, “Unsupervised Representation Learning with 

Deep Convolutional Generative Adversarial Networks,” figure 7, arXiv:1511.06434, 

https://arxiv.org/pdf/1511.06434/.

Figure 9.5

Generative adversarial networks (GANs). The top panel illustrates a convolutional net-

work used to generate a sample of images trained to fool the discriminative convolution-

al network. The input on the left are 100-dimensional continuously valued vectors that 

are chosen randomly to generate different images; the input vector then activates layers 

of filters with a larger and larger spatial scale. The lower panels display sample images 

produced by training a GAN on photos from single categories. Top: From A. Radford, 

L. Metz, and S. Chintala, “Unsupervised Representation Learning with Deep Convo-

lutional Generative Adversarial Networks,” figure 1, arXiv:1511.06434, https://arxiv 

.org/pdf/1511.06434.pdf. Courtesy of Soumith Chintala. Bottom: From A. Nguyen, J. 

Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune, “Plug & Play Generative Networks: 

Conditional Iterative Generation of Images in Latent Space,” figure 1, https://arxiv 

.org/pdf/1612.00005.pdf. Courtesy of Ahn Nguyen.
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the number of units and connections increased to match the complexity 

of real-world problems. Most algorithms in AI scale badly and never went 

beyond solving toy problems. We now know that neural network learn-

ing scales well and that performance continues to increase with the size 

of the network and the number of layers. Backprop, in particular, scales 

extremely well.

Should we be surprised? The cerebral cortex is a mammalian inven-

tion that mushroomed in primates and especially in humans. And as it 

expanded, more capacity became available and more layers were added 

in association areas for higher-order representations. There are few com-

plex systems that scale this well. The Internet is one of the few engi-

neered systems whose size has also been scaled up by a million times. The 

Internet evolved once the protocols were established for communicating 

packets, much like the genetic code for DNA made it possible for cells to  

evolve.

Training many deep learning networks with the same set of data results 

in a large number of different networks that have roughly the same average 

level of performance. What we would like to know is what all these equally 

good networks have in common, but analyzing a single network will not 

reveal this. Another approach to understanding the principles behind deep 

learning is to further explore the space of learning algorithms; we have 

Figure 9.7

Spring/summer 2018 men’s wear show for Giorgio Armani, in Milan.
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only sampled a few locations in the space of all learning algorithms. What 

could emerge from a much broader exploration is a computational theory 

of learning as profound as theories in other areas of science,27 one that 

could shed much welcome light on the learning algorithms discovered by 

nature.

Yoshua Bengio28 (figure 9.8) at the University of Montreal and Yann 

LeCun succeeded Geoffrey Hinton as the directors of CIFAR’s Neural Com-

putation and Adaptive Perception (NCAP) Program when it passed its ten-

year review and was renamed “Learning in Machines and Brains.” Yoshua 

led a team at the University of Montreal that applied deep learning to natu-

ral language, which will be a new focus for the Learning in Machines and 

Brains program. In meetings over ten years, this small group of around 

two dozen faculty and fellows gave birth to deep learning. The substantial 

progress in the last five years in the application of deep learning to many 

problems that had previously been intractable can be traced to them, but of 

course they are a small part of a much larger community (one that will be 

explored in chapter 11).

Even though deep learning networks have proven themselves in many 

applications, they would never survive on their own in the real world.29 

Figure 9.8

Yoshua Bengio is the codirector of the CIFAR Learning in Machines and Brains Pro-

gram. A French-born Canadian computer scientist, Yoshua has been a leader in ap-

plying deep learning to problems in natural language. Advances made by Geoffrey 

Hinton, Yann LeCun, and Yoshua Bengio were seminal for the successes of deep 

learning. Courtesy of Yoshua Bengio.
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They are coddled by researchers who feed them data, who tweak their 

hyperparameters like learning rate, number of layers, and number of units 

in each layer to improve convergence, and who provide them with vast 

computing resources. On the other hand, neither would the cerebral cortex 

survive in the real world without the rest of the brain and body to pro-

vide support and autonomy, which, in an uncertain world, is a much more 

difficult problem than pattern recognition. Chapter 10 will introduce an 

ancient learning algorithm that that helped us survive in nature by moti-

vating us to seek rewarding experiences.



According to a story going back to the Middle Ages, the inventor of the 

game of chess was offered a field of wheat from a grateful ruler. The inven-

tor instead requested one grain of wheat on the first square, two on the 

second, four on the third, and so on, doubling the number of grains on 

each successive square until all sixty-four squares of the chess board were 

covered with grains of wheat. Thinking this a modest request, the ruler 

readily agreed. In reality, however, to grant that request, he would have had 

to have given the inventor not just all the wheat in his kingdom, but all 

the wheat in the entire world for many centuries to come since the number 

of wheat grains on the sixty-fourth square would have been 264 (roughly 

1019).1 This is called “exponential growth.” The number of board positions 

in games like chess and Go grows even faster than the number of wheat 

grains in our story. At every move, there are on average thirty-five possible 

moves in a chess game, and, for Go, the branching factor is 250. This makes 

the exponential growth much more rapid.

Learning How to Play Backgammon

Games have the advantage that the rules are well defined, the players have 

perfect knowledge of the board and the decisions not as complex as those in 

the real world, but sufficiently complex to be challenging. In 1959, Arthur 

Samuel, a machine learning pioneer at IBM in the early days of commercial 

digital computers, wrote a program that could play checkers so successfully 

that on the day it was announced, IBM’s stock scored a major gain. Check-

ers is a relatively easy game, but Samuel’s program, based on a cost func-

tion to assess the strengths of different game positions, much like previous 

game programs, and run on IBM’s first commercial computer, the IBM 701, 

which used vacuum tubes, was impressive in one novel respect: it learned 

by playing itself.

10 Reward Learning
Chapter 10
Reward Learning
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Before moving on to IBM’s Thomas J. Watson Research Center in York-

town Heights, New York, Gerald Tesauro worked with me when he was at 

the Center for Complex Systems Research at the University of Illinois in 

Urbana-Champaign on the problem of teaching a neural network to play 

backgammon (figure 10.1).2 Our approach used expert supervision to train 

networks with backprop to evaluate game positions and possible moves. 

The flaw in this approach was that the program could never get better than 

our experts, who were not at world-championship level. But, with self-play, 

it might be possible to do better. The problem with self-play at that time 

was that the only learning signal was win or lose at the end of the game. 

But when one side won, which of the many moves were responsible? This 

is called the “temporal credit assignment problem.”

A learning algorithm that can solve this temporal credit assignment 

problem was invented in 1988 by Richard Sutton,3 who had been work-

ing closely with Andrew Barto, his doctoral advisor, at the University of 

Massachusetts at Amherst, on difficult problems in reinforcement learn-

ing, a branch of machine learning inspired by associative learning in ani-

mal experiments (figure 10.2). Unlike a deep learning network, whose only 

job is to transform inputs into outputs, a reinforcement network interacts 

in a closed loop with the environment, receiving sensory input, making 

Figure 10.1

Backgammon board. Backgammon is a race to the finish, with the red pieces moving 

in the opposite direction of the black pieces (arrows). The starting position is shown. 

Two dice are rolled, and the two numbers indicate how far two pieces can be moved 

ahead.
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decisions, and taking actions. Reinforcement learning is based on the obser-

vation that animals solve difficult problems in uncertain conditions by 

exploring the various options in the environment and learning from their 

outcomes. As learning improves, the exploration decreases, eventually lead-

ing to pure exploitation of the best strategy found during learning.

Suppose you have to make a series of decisions to reach a goal. If you 

already know all the possible choices and each of their expected future 

rewards, you can use a search algorithm—specifically, Richard Bellman’s 

algorithm for dynamic programming4—to figure out the set of choices that 

maximizes future rewards, but, as the number of possible choices grows, 

the size of the problem grows exponentially, which has been called the 

“curse of dimensionality,” and was illustrated at the beginning of this chap-

ter. But, if you don’t have all the information about the outcomes of the 

choices ahead of time, you have to learn to make the best choices you can 

as you go along. This is called “online learning.”

The online learning algorithm that Richard Sutton (figure 10.3) devel-

oped depended on differences between expected and received rewards (box 

10.1). In temporal difference learning, you compare your estimated long-

range reward for making a move in a current state, with a better estimator 

based on the actual reward you got, and the estimated long-range reward 

of the next state. By changing the previous estimate to be more like the 

improved estimate, the decisions that you make on moves will get better 

Figure 10.2

Reinforcement learning scenario. The agent actively explores the environment by 

taking actions and making observations. If an action is successful, the agent receives 

a reward. The goal is to learn actions that maximize future rewards.
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and better. The update is made to a value network that estimates the future 

expected reward for each board position and is used to decide on the next 

move. The temporal difference algorithm converges to the optimal rule 

for making decisions in a given state after you have had enough time to 

explore the possibilities. The curse of dimensionality is avoided because 

only a small fraction of all possible board positions are actually visited, but 

this is enough to develop good strategies for similar board positions that are 

likely to arise in new games.

Gerry Tesauro’s program, called “TD-Gammon,” had important features 

of the backgammon board and rules built into it, but it had no knowledge 

of what was a good move to make. At the beginning of the learning, the 

moves were random, but eventually one side won and got the final reward. 

Figure 10.3

Richard Sutton at the University of Alberta in Edmonton in 2006. He taught us how 

to learn the route to future rewards. Rich is a cancer survivor who has remained a 

leader in reinforcement learning and continues to develop innovative algorithms. 

He is generous with his time and insights, which everyone in the field greatly values. 

His book with Andrew Barto, Reinforcement Learning: An Introduction, is a classic in 

the field. The second edition is freely available on the Internet. Courtesy of Richard 

Sutton.
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Box 10.1

Temporal Difference Learning

In this model of the honeybee brain, actions are chosen (such as landing on a 

flower) that maximize all future discounted rewards:

R(t) = rt+1 + γ rt+2 + γ2 rt+3 + …, 

where rt+1 is the reward at time t+1 and 0 < γ < 1 is a discount factor. The 

predicted future reward based on current sensory inputs s(t) is computed by 

neuron P:

Pt (s) = wy sy + wb sb, 

where the sensory input from yellow (Y) and blue (B) flowers are weighted by 

wy
 and wb

. The reward prediction error δ(t) at time t is given by

δt = rt + γ Pt(st) – Pt(st-1),

where rt is the current reward. The change in each weight is given by:

δ wt = α δt st-1, 

where α is the learning rate. If the current reward is greater than the predicted 

reward, and δt is positive, the weight is increased on the sensory input that was 

present before the reward, but if the current reward is less than expected, and 

δt is negative, the weight is decreased.

Adapted from Montague, P. R. and Sejnowski, T. J., The Predictive Brain: 

Temporal Coincidence and Temporal Order in Synaptic Learning Mechanisms,  

figure 6A.
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The winner in backgammon is the first player to “bear off” all of the pieces 

from the game board.

Since the only actual reward occurs at the end of a game, you might 

reasonably expect that TD-Gammon would first learn the endgame, then 

the middle game, and finally the openings. This is in fact what happens in 

“tabular reinforcement learning,” or “tabular RL,” where there is a table of 

values for every state in the state space. But it’s completely different with 

neural networks—they latch quickly onto simple and reliable signals in the 

input features, and more complex and unreliable input signals later. The 

first concept that TD-Gammon learns is “Bear off pieces,” by attaching posi-

tive weight to the input feature that represents number of pieces borne off. 

The second concept is “Hit the opponent pieces”— a fairly good heuristic 

in all phases, learned by putting positive weight on the input unit encoding 

number of opponent pieces that were hit. The third concept, “Avoid being 

hit” is a natural reaction to the second concept, and is learned by putting 

negative weight on single pieces that can be hit. The fourth concept is “Build 

new points” to block the opponent’s progress, learned by putting positive 

weights on made-point inputs. Getting these basic concepts requires a few 

thousand training games. By 10,000 games, TD-Gammon is learning inter-

mediate concepts; by 100,000 games, it starts to learn advanced concepts, 

and by one million games, it has learned concepts that were either world 

class, or beyond the knowledge of humans in the early 1990s.

TD-Gammon surprised me and many others when Gerry Tesauro 

revealed it to the world in 1992.5 The value function was a backprop net-

work with eighty hidden units. After three hundred thousand games, the 

program was beating Gerry, so he contacted a famous world-champion 

backgammon player and author, Bill Robertie, and invited him to visit IBM 

at Yorktown Heights to play TD-Gammon. Robertie won most of the games 

but was surprised to lose several well-played ones and declared it the best 

backgammon program he had ever played. Some of TD-Gammon’s unusual 

moves he had never seen before; on closer examination, these proved to 

be improvements on human play overall. Robertie returned when the pro-

gram had reached 1.5 million self-played games and was astonished when 

TD-Gammon played him to a draw. It had gotten so much better that he 

felt it had achieved human-championship level. One backgammon expert, 

Kit Woolsey, found that TD-Gammon’s positional judgment on whether to 

play “safe” (low risk/reward) or play “bold” (high risk/reward) was at that 

time better than that of any human he had seen. Although 1.5 million 

may seem like a lot of training games, it represented only an infinitesimal 

fraction of all 1020 possible backgammon board positions; this required TD-

Gammon to generalize to new board positions on almost every move.
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TD-Gammon did not get as much publicity as IBM’s Deep Blue, which 

beat Gary Kasparov at chess in 1997. Chess is much more difficult than 

backgammon, and Kasparov was the world champion at the time. In some 

ways, though, TD-Gammon was a more impressive achievement. First, TD-

Gammon taught itself how to play, using pattern recognition, a style similar 

to how humans play, whereas Deep Blue won by brute force, using custom 

hardware to look more moves into the future than any human could. And, 

second, TD-Gammon was creative and came up with subtle strategies and 

positional play never before seen by humans. In doing so, TD-Gammon 

raised the level of human play. This achievement was a watershed in the 

history of artificial intelligence because we learned something new from an 

AI program that taught itself how to master a complex strategy in a well-

trodden domain, a strategy that is worthy of human interest and effort.

Reward Learning in Brains

The heart of TD-Gammon is the temporal difference learning algorithm, 

which was inspired by learning experiments with animals. Nearly all spe-

cies that have been tested, from bees to humans, can be taught associatively, 

just like Pavlov’s dog. In Pavlov’s experiment, a sensory stimulus such as a 

bell was followed by the presentation of food, which elicited salivation. 

After several pairings, the bell by itself would lead to salivation. Different 

species have different preferred unconditioned stimuli in associative learn-

ing. Bees are very good at associating the smell, color, and shape of a flower 

with the reward of nectar and use this learned association to find similar 

flowers that are in season. Something about this universal form of learning 

must be important, and there was a period in the 1960s when psycholo-

gists intensively studied the conditions that gave rise to associative learning 

and developed models to explain it. Behaviorists like B. F. Skinner trained 

pigeons to recognize humans in photos, which calls to mind what can be 

accomplished with deep learning, but there is a big difference. Backprop 

learning requires detailed feedback to all the units on the output layer, but 

associative learning provides only a single reward signal, correct or incor-

rect. The brain has to figure out what features of the world were responsible 

for a successful decision.

Only the stimulus that occurs just before the reward gets associated 

with the reward. This makes sense because a stimulus is more likely to have 

caused the reward if it comes just before than if it comes just after the 

reward. Causality is an important principle in nature. The opposite occurs 

when the conditioned stimulus is followed by punishment, such as a shock 

to the foot, which teaches an animal to avoid the stimulus. In some cases, 
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the gap between the conditioned stimulus and the punishment can be 

quite long. In the 1950s, John Garcia showed that if a rat was fed sweet-

ened water and made nauseous hours later, the rat would avoid sweetened 

water days later. This is called “taste aversion learning,” and it also occurs in 

humans.6 Sometimes, the nausea will be associated with the wrong ingested 

food, like chocolate, which unfortunately happened to be consumed at the 

same time but did not cause the nausea; the resulting aversion can last 

many years even though there is a conscious awareness that chocolate was 

not the problem.

Dopamine, a neuromodulator carried by a set of diffusely projecting 

neurons in the brainstem (figure 10.4), had long been associated with 

reward learning, but it was not known what exactly they signaled to the 

cortex. Peter Dayan and Read Montague, postdoctoral fellows in my lab 

in the 1990s, realized that dopamine neurons could implement temporal 

difference learning.7 In one of the most exciting scientific periods of my 

life, these models and their predictions were published and subsequently 

Figure 10.4

Dopamine neurons in the human brain. Several nuclei in the midbrain (VTA and 

substantia nigra) project axons into the cortex and the basal ganglia (striatum and 

nucleus accumbens). Transient bursts signify discrepancies between the reward  

predictions and received reward, which are used to choose actions and modify  

predictions.
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confirmed by Wolfram Schultz and colleagues in monkeys with single-

neuron recordings (figure 10.5)8 and in humans with brain imaging.9 It is 

now well established that transient changes in the activity of dopamine 

neurons signal reward prediction error.

We were making progress on reward prediction error in primates when I 

visited Randolph Menzel, who was studying fast learning in the bee brain, 

in Berlin in 1992. Bees are champion learners in the insect world. It only 

takes a few visits to a rewarding flower for a bee to remember the flower. 

The bee brain has around a million tiny neurons, and it is very difficult to 

record from them because they are so tiny. Menzel’s group had discovered 

a unique neuron called “VUMmx1” that responded to sucrose but not to 

an odor. If delivery of the odor was shortly followed by the sucrose reward, 

however, VUMmx1 would now also respond to the odor.10 The dopamine 

model of temporal difference learning might be implemented by a single 

neuron in the bee brain. VUMmx1 released octopamine, a neuromodulator 

closely related chemically to dopamine. This model of bee learning could 

explain some subtle aspects of bee psychology, such as risk aversion.11 If a 

bee is given the choice between a constant reward and twice the reward, but 

only half the time, bees will stay with the constant reward even though the 

average is the same.12 Dopamine neurons are also found in flies and have 

been shown to comprise several parallel reinforcement learning pathways 

for both short-term and long-term associative memories.13

Motivation and the Basal Ganglia

Dopamine neurons constitute a core system that controls motivation in 

the brain (figure 10.4). All addictive drugs act by increasing the level of 

dopamine activity. When enough dopamine neurons die, the symptoms of 

Parkinson’s disease appear, which include motor tremor, difficulty in initi-

ating actions, and, eventually, the complete loss of pleasure in any activity 

(“anhedonia”), ending in a complete lack of movement and responsiveness 

(“catatonia”). But normally behaving dopamine cells provide brief bursts of 

dopamine to the cortex and other brain areas when an unexpected reward 

occurs and diminished amounts of dopamine when a less than expected 

reward is experienced. This is precisely the signature of the temporal differ-

ence algorithm (figure 10.5).

Our dopamine neurons can be interrogated when we need to make a 

decision. What should we order from the menu? We imagine each item, 

and our dopamine cells provide an estimate of the expected reward. Should 

we marry this person? Our dopamine cells will give us a “gut” opinion that 
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Figure 10.5

Response of a dopamine neuron in the monkey brain proving that it signals reward 

prediction error to the rest of the brain. Each dot is a spike in dopamine neurons. 

Each line is a single learning trial. The number of spikes in each time bin is shown 

at the top of each raster. (Top) At the beginning of learning, reward is unexpect-

ed and the dopamine consistently fires a burst of spikes shortly after the reward. 

(Middle) After many trials when a light (conditioned stimulus, CS) is consistently 

flashed before reward delivery, the dopamine cell responds to the CS but not the 

reward. According to temporal difference learning, the response after the reward is 

cancelled by the reward prediction. (Bottom) When the reward is withheld on catch 

trials, a dip in firing is revealed that represents the predicted reward. Adapted from 

Schultz, Dayan, and Montague, “A Neural Substrate of Prediction and Reward,” 1594,  

figure 1.
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is more trustworthy than reasoning. But here problems with many incom-

mensurate dimensions are the most difficult to decide. How do we trade off 

a sense of humor against being messy or make hundreds of other trade-offs 

of positive against negative qualities when choosing a spouse? Our reward 

system reduces all these dimensions down to a common currency, the tran-

sient dopamine signal. Nature discovered the economic power of a univer-

sal currency long before we did.

There are two parameters in the temporal difference learning algorithm: 

the learning rate α and the discount factor γ in box 10.1. Whereas certain 

insects have a high learning rate, such as bees, which can learn to associ-

ate a flower with a reward after a single visit, learning rates are lower in 

mammals, which generally learn over many trials. The discount factor also 

varies over a wide range. When γ = 0, the learning algorithm is greedy, 

and decisions are made based only on immediate rewards; but when γ = 

1, all future rewards are weighted equally. In a classic experiment, young 

children were given a choice between either eating a marshmallow imme-

diately or waiting for fifteen minutes to get an additional marshmallow.14 

Age was a strong predictor, with younger children unable to delay gratifi-

cation. Expecting a large reward in the distant future can lead us to make 

choices with negative rewards in the short term if we deem them necessary 

to achieve that expected reward.

Dopamine neurons receive inputs from a part of the brain called  

the “basal ganglia” (figure 10.4), which were known to be important for 

sequence learning and the formation of habitual behaviors. Neurons in the 

striatum of the basal ganglia receive input from the entire cerebral cortex. 

Inputs from the back half of the cortex are especially involved with learn-

ing sequences of motor actions to achieve a goal. Inputs to the basal ganglia 

from the prefrontal cortex are more concerned with planning sequences 

of actions. The loop from the cortex to the basal ganglia and back takes 

100 milliseconds, which circulates information ten times a second. This 

allows sequences of fast decisions to be made toward achieving a goal. Neu-

rons in the basal ganglia also evaluate cortical states and assign a value  

to them.

The basal ganglia perform a sophisticated version of the value function 

that Gerry Tesauro trained in TD-Gammon to predict the value of board 

positions. The surprising success of DeepMind’s AlphaGo described in 

chapter 1 in achieving a world-championship level of play in Go is based 

on the same architecture as TD-Gammon, but on steroids. One layer of hid-

den units in the value network of TD-Gammon became a dozen layers in 

AlphaGo, which played many millions of games. But the basic algorithms 
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were the same. This is a dramatic demonstration of how well learning algo-

rithms for neural networks scale. How much better will performance be if 

we continue to increase the size of the network and training time?

Games are a much simpler environment than the real world. A stepping-

stone toward more complex and uncertain environments comes from the 

world of video games. DeepMind had shown in 2015 that temporal dif-

ference learning could learn to play Atari arcade games such as Pong at 

superhuman levels, taking the pixels of the screen as input.15 The next 

stepping-stone is video games in a three-dimensional environment. Star-

Craft is among the best competitive video games of all time. DeepMind 

is using it to develop autonomous deep learning networks that can thrive 

in that world. Microsoft Research recently bought the rights to Minecraft, 

another popular video game, and has made it open source so others could 

customize its three-dimensional environment and speed up the progress of 

its artificial intelligence.

Playing backgammon and Go at championship levels is an impres-

sive achievement, and playing video games is an important next step, 

but what about solving real-world problems? The perception-action cycle 

(figure 10.2) can be applied to solve any problem for which actions are 

planned based on sensory data. The result of the action can be compared 

with the predicted outcome and the difference then used to update the 

state of the system making the predictions; the memory of previous condi-

tions can be used to optimize the use of resources and anticipate potential  

problems.

Simon Haykin at McMaster University in Hamilton, Ontario, used this 

framework to improve the performance of several important engineered 

software systems,16 including cognitive radio, which dynamically allocates 

communications channels; cognitive radar, which dynamically shifts fre-

quency bands to reduce interference; and the cognitive grid, which dynam-

ically loads balances electrical power on the electrical grid. Risk control 

can also be managed within the same perception-action framework.17 The 

improvements made by using the perception-action framework in each of 

these software systems and thus also the improvements in the areas they 

manage are substantial, significantly enhancing performance and reducing 

costs.

Learning How to Soar

In 2016, Massimo Vergassola, a physicist at UC, San Diego, and I wondered 

whether it was possible to use temporal difference learning to teach a glider 
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how to soar and stay aloft for hours without expending much energy like 

many birds.18 Thermal upwelling of air can carry birds to great heights, but, 

within a thermal, the air is turbulent and there are pockets of falling as well 

as rising air. The cues birds use to maintain their upward trajectory in the 

face of so much buffeting are not known. Our first step was to develop a 

physically realistic simulation of turbulent convective flow and a model of 

the aerodynamics of a glider. Our next step was then to simulate the trajec-

tory taken by the glider in the turbulent flow.

At first, the glider was not able to take advantage of the rising columns 

of air and glided downward (figure 10.6). After being rewarded for going 

up, the glider began to learn a strategy, and, after a few hundred trials, the 

trajectories of the glider resembled the tight loops made by soaring birds 

(figure 10.6). The glider also learned different strategies for different degrees 

of turbulence. By analyzing these strategies, we could develop hypotheses, 

and we could ask whether soaring birds in fact used the strategies. We then 

instrumented a real glider with a six-foot wingspan and taught it to soar 

and stay aloft.19

Learning How to Sing

Another example of the power of reinforcement learning is the parallel 

between how birds learn to sing and how children learn to speak. In both 

cases, an initial period of auditory learning is followed by a later period 

of progressive motor learning. Zebra finches hear their father’s song early 

in life but don’t produce any sounds themselves until months later. Even 

when they are isolated from their father before the motor learning phase, 

they go through a period of scratchy-sounding subsong that continues to 

improve and eventually crystallizes into birdsong in their father’s dialect. 

Zebra finches know what part of the forest a conspecific came from by 

its song, just as we know where a person is from by that person’s accent. 

The hypothesis that has driven birdsong research is that, during the audi-

tory learning phase, a template is learned that is then used to refine the 

sounds produced by the motor system in the motor learning phase. The 

pathways that are responsible for the motor learning phase in both humans 

and songbirds are in the basal ganglia, where we know that reinforcement 

learning takes place.

In 1995, Kenji Doya, a postdoctoral fellow in my lab, developed a rein-

forcement learning model for the motor refinement of birdsong (figure 

10.7). The model improved its performance by tweaking synapses in the 

motor pathway to a model of the vocal organ in birds (“syrinx”), and then 
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Figure 10.6

Simulations of a glider learning to soar in a thermal. (Upper panels) (A) Typical tra-

jectories of an untrained glider (A) and a trained glider (B) flying within a Rayleigh-

Bénard turbulent flow. The colors indicate the vertical wind velocity experienced 

by the glider. The green and red dots indicate the start and the end points of the 

trajectory, respectively. The untrained glider takes random decisions and descends, 

whereas the trained glider flies in characteristic spiraling patterns in regions of strong 

ascending currents, as observed in the thermal soaring of birds and gliders. (Lower 

panels) Snapshots of the vertical velocity (A) and the temperature fields (B) in our 

numerical simulations of three-dimensional Rayleigh-Bénard convection. For the 

vertical velocity field, the red and blue colors indicate regions of large upward and 

downward flow, respectively. For the temperature field, the red and blue colors indi-

cate regions of high and low temperature, respectively. From G. Reddy, A. Celani, T. 

J. Sejnowski, and M. Vergassola, “Learning to Soar in Turbulent Environments,” top: 

figure 2; bottom: figure 11.
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testing to see if the new song was a better match to the template than the 

previous song. If so, the changes were kept, but if the new song was worse, 

the changes in the synapses were allowed to decay back to their original 

strengths.20 We predicted that, at the top of the motor circuit that gener-

ates the sequence of syllables, there should be neurons that are only active 

on a single syllable of the song, in order to make it easier to adjust each 

syllable separately. Since then, findings from Michale Fee’s lab at MIT and 

from other birdsong labs have confirmed this and other key predictions of 

the model.

Allison Doupe, who studied birdsong learning at UC, San Francisco, 

and Patricia Kuhl, who studied the development of speech in babies at the 

Figure 10.7

Zebra finch birdsong. In the spectrograms on right side of figure, the song of the 

father (tutor, top) teaches that of the son (pupil, second from top), and the dialect of 

the birdsong is passed on from generation to generation. Note the similarity of the 

motif (red outlined boxes) in the spectrograms (spectral power as a function of time). 

The motif grows shorter with each generation. Left: http://bird-photoo.blogspot.

com/2012/11/zebra-finch-bird-pictures.html; right: Olga Feher, Haibin Wang, Sigal 

Saar, Partha P. Mitra, and Ofer Tchernichovski, “De novo Establishment of Wild-

Type Song Culture in the Zebra Finch,” figure 4.
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University of Washington in Seattle, have drawn many parallels between 

songbird learning and the emergence of speech in toddlers.21 Both syl-

lables in birds and phonemes in babies are learned first as sounds (auditory 

learning), with motor learning coming only later, first as subsong in birds 

and as babbling in babies. There are many domain-specific learning and 

memory systems in brains that must work together toward the acquisi-

tion of new skills and the reinforcement learning algorithm for learning 

birdsongs in songbirds and temporal difference learning algorithm in the 

reward system for monkeys, humans, bees, and other animals are only two  

of many.

Other Forms of Learning

Despite the progress made in automating some cognitive functions like 

seeing and hearing, there are many other aspects of human intelligence 

where advances are needed in artificial intelligence. Representation learn-

ing in the cortex together with reinforcement learning in the basal ganglia 

powerfully complement each other. Can AI learning to play championship 

Go translate to solving other complex problems? Much of human learn-

ing is based on observation and mimicry, and we need far fewer examples 

than deep learning to learn to recognize a new object. Unlabeled sen-

sory data are abundant, and powerful unsupervised learning algorithms 

might use these data to advantage before any supervision takes place. In 

chapter 7, an unsupervised version of the Boltzmann learning algorithm 

was used to initialize deep learning networks, and in chapter 6, inde-

pendent component analysis (ICA), an unsupervised learning algorithm, 

extracted sparse population codes from natural images and in chapter 9, 

generative adversarial networks, an unsupervised learning system, can cre-

ate novel photorealistic mages. Unsupervised learning is the next fron-

tier in machine learning. We are just starting to understand brain-style  

computing.

The brain has many learning systems and many forms of plasticity that 

work together synergistically. Even within the cortex, there are several 

dozen forms of plasticity, including plasticity in neuronal excitability and 

gain. A particularly important form of synaptic plasticity is homeostatic, 

which ensures that neurons maintain activity levels within their opti-

mal dynamic range. What happens when the synaptic strength decreases 

to zero or reaches a maximum limit? This could result in a neuron never 

receiving sufficient input to reach threshold, or in receiving too much 

input and staying always at a high level of activity. In the brain, a new form 
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of synaptic plasticity was discovered by Gina Turrigiano that normalizes all 

the synapses on a neuron to maintain a balance of activity in the neuron.22 

If the average firing rate is too high, all the excitatory synaptic strengths 

are all scaled down; if too low, all strengths are scaled up. For inhibitory 

inputs, this is reversed, with synaptic strengths scaled up if the firing rate is 

too high and scaled down if the rate is too low. Similar forms of normaliza-

tion have proven effective in modeling the development of neural maps in 

the brain.23 Artificial neural networks that are driven by stochastic gradient 

descent could benefit from homeostatic scaling.

The brain has dozens of voltage-sensitive and ligand-gated ion channels 

in the membranes of its neurons that regulate excitability and signaling. 

There must be mechanisms based on local patterns of activity in the den-

drites, somas and axons of neurons that dynamically regulate the locations 

and densities of these channels. Several algorithms have been suggested for 

how this could be accomplished.24 This form of homeostasis is not as well 

understood as homeostatic synaptic plasticity.

What Is Missing?

Demis Hassabis and I participated in intense debates about the future of 

and next priority for artificial intelligence that took place during the Brains, 

Minds and Machines symposium at the 2015 NIPS Conference in Montreal 

and the Bits and Brains workshop at the NIPS 2016 Conference in Barce-

lona. There are still many open questions in AI that need to be addressed. 

Foremost is the question of causality, which informs the highest levels of 

human reasoning, and the intentionality of actions, both of which presup-

pose a theory of mind. I mentioned earlier that none of the deep learning 

systems we have created are able to survive on their own. The autonomy of 

these systems will only be possible if they include functions similar to those 

from many other parts of the brain hitherto ignored, such as the hypothala-

mus, which is essential for feeding, reproduction, the regulation of hor-

mones, and the homeostasis of internal organs, and the cerebellum, which 

helps us refine movements based on movement prediction error. These are 

ancient structures found in all vertebrates and are important for survival.

Hava Siegelmann is a computer scientist at the University of Massachu-

setts at Amherst who has shown that analog computing is super-Turing; 

that is, capable of going beyond what can be computed with digital com-

puters.25 Recurrent neural networks that can adapt and learn based on the 

environment also have the super-Turing computational power, while net-

works that learn from a training set and are then frozen, and do not learn 
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from their actual experience while they operate, are no more than Turing 

machines. However, our brains must continue to adapt to changing condi-

tions, making us super-Turing. How this is done while maintaining pre-

vious knowledge and skills is an unsolved problem. Hava is the program 

manager for a DARPA project on Lifelong Learning. Her Lifelong Learning 

Program is funding advanced research aimed at creating a new integrated 

architecture for lifelong learning in autonomous systems.



Tracing the origins of ideas is difficult because science is a collective activ-

ity of many individuals often widely distributed over space and time. The 

Neural Information Processing Systems (NIPS; figure 11.1) conferences 

have been a thread throughout the narrative of this book, and, by now, it 

should be clear that these conferences have had an enormous influence not 

only on me but on the field as well.1 My future wife, Beatrice Golomb, gave 

her SEXNET talk at an early NIPS conference (1990), and it was at another, 

shortly after we married, that we almost broke up. NIPS conferences are 

total immersion, with formal sessions during the day and poster sessions 

in the evening, going strong well past midnight. When I came back to our 

room from one such session at 3 a.m. and could not find Beatrice, I knew I 

was in trouble. We are still together after twenty-eight years.

Deep learning has a long bloodline that can be traced to the annual NIPS 

conferences and workshops and to earlier pioneers. In the 1980s, a diverse 

group of engineers, physicists, mathematicians, psychologists, and neuro-

scientists came together at the NIPS conferences to build a new approach 

to artificial intelligence. Rapid progress was spurred by advances made 

by physicists analyzing neural network models, psychologists modeling 

human cognition, neuroscientists modeling neural systems and analyzing 

neural recordings, statisticians exploring large data sets in high-dimensional 

spaces, and engineers building devices that could see and hear like humans.

There were 400 attendees at the first NIPS conference in 1987 at the Den-

ver Tech Center. Academic conferences typically focus on narrow areas of 

research, which are comfortable because everybody speaks the same jargon, 

but the scientific diversity at early NIPS conferences was truly breathtaking. 

Biologists speak in code when they are giving a talk to other biologists.2 It 

is even worse with mathematicians and physicists, who talk only in equa-

tions. Engineers are somewhat better because they build things that speak 

for themselves. But because of these cultural barriers, interdisciplinary 

11 Neural Information Processing Systems
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research, though universally hoped for, is seldom achieved. At the early 

NIPS conferences, it was as if everyone was speaking in tongues.

After the main conference in 1987, the attendees convened to a work-

shop at Keystone, a nearby ski resort, and self-organized into smaller group 

meetings on the spot. This is where communication between disciplines 

really began, in a more informal setting. I vividly remember a neurosci-

entist suggesting we have a workshop on the sea slug Aplysia while in a 

hot tub at Keystone.3 The gentleman next to me in the hot tub from the 

Department of Defense was probably wondering what Aplysia had to do 

with national security. Today, however, NIPS workshops are miniconfer-

ences with posters, some of which attract thousands of attendees.

What kept NIPS together year after year was, first, the excitement in the 

air that we were on the verge of solving difficult computational problems 

based on biologically inspired learning algorithms and, second, Ed Posner 

(figure 11.2), an information theorist at Caltech and the chief technolo-

gist at the Jet Propulsion Lab, who had a long-term vision for the field and 

founded the Neural Information Processing Systems Foundation to manage 

the conferences.

The culture of an organization is often a reflection of its founder; Ed 

gave NIPS a unique combination of wisdom, practical smarts, and sense of 

humor. He was an inspiring teacher and effective leader and was beloved at 

Figure 11.1

Logo of the Neural Information Processing Systems conferences. Founded thirty 

years ago, NIPS conferences are the premier conferences on machine and deep learn-

ing. Courtesy of the NIPS Foundation.
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Caltech for his support of the Summer Undergraduate Research Fellowships 

(SURF) program, one of the “crown jewels of Caltech.” Ed recruited Phil 

Sotel as pro bono legal counsel, who kept NIPS on track over the decades 

as it grew in size and complexity, when there were many ways that it could 

have derailed.

Ed knew Beatrice Golomb when she was a young girl and knew me sepa-

rately through NIPS; so when, out of the blue, I told him at a NIPS con-

ference that Beatrice and I were engaged, he replied, “Engaged in what?” 

When Ed died in a bicycle accident in 1993, I became president of the 

NIPS Foundation, which has continued to grow and prosper. We have an 

annual Ed Posner Lecture at NIPS to honor him. Invited speakers are gener-

ally working in areas outside the NIPS mainstream, but the Posner Lecture 

Figure 11.2

Edward “Ed” Posner at Caltech, who founded the NIPS conferences, which are still 

going strong thirty years later in part because of his foresight. Courtesy of Caltech.
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features someone from our own community who has made a major contri-

bution to our field.

The general chairs of NIPS conferences are a distinguished group of sci-

entists and engineers. To name just a few, Scott Kirkpatrick is a physicist 

who (as noted in chapter 7) invented a way for computers to solve diffi-

cult computational problems by “heating” them up and slowly “cooling” 

them down in a process called “simulated annealing”; Sebastian Thrun is 

a computer scientist who (as noted in chapter 1) won the 2005 DARPA 

Grand Challenge for an autonomous automobile, which opened the door 

to today’s self-driving cars; and Daphne Koller is a computer scientist who 

cofounded Coursera (mentioned in chapter 12), which pioneered massive 

open online courses (MOOCs).

What made deep learning take off was big data. Not too long ago, a tera-

byte of data took up an entire rack of computers; it is now possible to store 

a terabyte (trillion bytes) of data on a single memory stick. Internet compa-

nies have data centers that store many petabytes, each a thousand terabytes 

(quadrillion or 1015 bytes). The amount of data in the world has doubled 

every three years since the 1980s. Thousands of petabytes of data are added 

every day to the Internet, whose total capacity has reached a zettabyte, 

which is a million petabytes (sextillion or 1021 bytes). The explosion of big 

data is having an influence not just on science and engineering but also on 

every area of society. It would have been impossible to train really big deep 

learning networks without the millions of images and other labeled data 

available on the Internet.

Universities throughout the world are setting up new centers, institutes, 

and departments for data science. In 2009, Alex Szalay founded the Institute 

for Data Intensive Engineering and Science (IDIES) at The Johns Hopkins 

University, building on his experience with the Sloan Digital Sky Survey 

(SDSS; http://www.sdss.org/), which began collecting astronomical data in 

1998. It produced a thousandfold increase in the total amount of data 

that astronomers had ever collected and today is the most used astronomy 

facility in the world. But the terabyte-scale data sets collected by the Sloan 

Digital Sky Survey will themselves be outstripped a thousandfold by the 

petabyte-scale data sets to be collected by the Large Synoptic Sky Survey 

Telescope (https://www.lsst.org/) under construction. When Yann LeCun 

founded the Center for Data Science at New York University in 2013, fac-

ulty from every department came knocking on his door with data in hand. 

In 2018 UCSD dedicated a new Halıcıoğlu Data Science Institute. Master’s 

in Data Science degrees (MDSs) are becoming as popular as MBAs.
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Deep Learning at the Gaming Table

Deep learning came of age at the 2012 NIPS Conference at Lake Tahoe 

(figure 11.3). Geoffrey Hinton, an early pioneer in neural networks, and 

his students presented a paper reporting that neural networks with many 

layers were remarkably good at recognizing objects in images.4 These net-

works weren’t just better than the state-of-the-art computer vision at object 

recognition—they were in a different, higher league, much closer to human 

levels of performance. The New York Times ran an article on deep learning, 

and Facebook announced a new AI lab with Yann LeCun, another deep 

learning pioneer, as the founding director.

The participation of Mark Zuckerberg, the CEO of Facebook, at the NIPS 

deep learning workshop that year was a security headache but a huge draw, 

which required an overflow room with a video feed. At the reception after-

ward, I was introduced to Zuckerberg, who asked me questions about the 

brain. He had a particular interest in the theory of mind. In psychology, we 

have an implicit theory of how our minds work, and we use that as a guide 

Figure 11.3

Held at a Lake Tahoe casino, the 2012 NIPS Conference was a turning point for the 

field and put the “Neural” back into “Neural Information Processing Systems.” Cour-

tesy of the NIPS Foundation.
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to others’ minds. When we text our friends, we are unaware of the many 

decisions our brains have made concerning what to type and how to type 

it. Zuckerberg asked a lot of questions. “How does my brain make a mental 

model of myself?” “How does my brain make mental models of other peo-

ple based on experience?” “How does my brain predict the future behavior 

of others?” “Do other species have a theory of mind?” I had recently co-

organized a symposium at the Salk Institute on the theory of mind, and 

Zuckerberg wanted all the symposium references.

In machine learning, whoever has the most data wins, and Facebook has 

more data about more people’s likes, friends, and photos than anyone else. 

With all these data, Facebook could create a theory of our minds and use it 

to predict our preferences and political leanings. Facebook might someday 

know us better than we know ourselves. Will Facebook someday become 

the incarnation of Orwell’s Big Brother?5 Do you find this a chilling pros-

pect, or would you find it convenient to have a digital butler to attend to 

your needs? We might well ask whether Facebook should have this power, 

but we may not have much say in the matter.

Although we held the 2012 and 2013 NIPS Conferences in Lake Tahoe 

casinos, attendees avoided the gaming tables. They knew the odds favored 

the house, and what they were working on was far more exciting. Gaming 

can be addictive because of the dopamine reward prediction error system 

that is a part of our brains (discussed in chapter 10). Casinos have opti-

mized conditions that favor betting: the promise of a big payoff; the occa-

sional smaller wins (rewards) randomly spaced, which studies have shown 

are the best way to keep laboratory rats pressing the bars for food; the noises 

and lights that are triggered when there is a win in a slot machine; dim 

lights night and day, which decouple your light-driven circadian from your 

normal day-night cycle, encouraging you to bet until you drop. But in the 

long run, of course, the house always wins.

At the 2015 NIPS Conference in Montreal, 3,800 international attendees 

overflowed the Palais des congrès. The deep learning tutorial at the begin-

ning of the conference was so popular that we had to turn people away to 

stay within the fire code. Deep learning has been adopted by almost every 

company with big data in the high-tech sector and is spreading at an accel-

erating pace. The 2016 NIPS Conference in Barcelona had to be capped at 

5,400 attendees two weeks before the conference. A walk-in who flew in 

from New York was disappointed to learn he could not register on site. Reg-

istration for NIPS in 2017 at Long Beach was capped twelve days after regis-

tration opened and reached 8,000. If the 50 percent increase in attendance 

per year since 2014 continues, everyone on the planet will eventually want 



Neural Information Processing Systems 167

to come to NIPS conferences. Of course, the bubble will eventually burst, 

but, as with most bubbles, no one knows when.

Researchers from the many tribes of science and engineering continue 

to gather at NIPS conferences, as they have done annually for thirty years, 

although, of the 5,400 attendees at the 2016 NIPS Conference in Barcelona, 

40 percent were there for the first time. Up until 2016, the NIPS Foundation 

Board of Trustees wisely decided to keep the conferences single track, rare 

for large conferences. The idea was for everyone to sit in the same room to 

keep the field from fragmenting. But in 2016, the single track became two 

tracks because it was difficult to find a big enough room to fit everyone 

into. Still, this was far fewer than the ten tracks common at most other 

large conferences. The NIPS acceptance rate for submissions has been kept 

around 20 percent, which is below the acceptance rate for most journals. 

NIPS has hosted Women in Machine Learning (WiML),6 which in 2016 

brought nearly 600 women—10 percent of all conference attendees—to 

Barcelona and 1,000 women to Long Beach in 2017. Diversity continues to 

be a hallmark of NIPS conferences. No single field on its own could have 

brought together the diverse talent that created deep learning.

With its potential for affecting so many industries, it may be surprising 

that there are so few patents protecting the intellectual property for deep 

learning. In the 1980s, wanting to make learning algorithms the founda-

tion for a new field of science, we felt that securing patents would not 

help. No doubt there are patents being filed by companies today for specific 

applications since companies won’t make big investments in new technol-

ogy without protection.

Preparing for the Future

Major breakthroughs in neural network learning have occurred every thirty 

years, starting with the introduction of perceptrons in the 1950s, learn-

ing algorithms for multilayer perceptrons in the 1980s, and deep learn-

ing in the 2010s. In each case, there was a period of exuberance, when 

much progress was made in a short time, followed by a longer period of 

slower, incremental advances. One difference, though, is that the impact of 

the exuberant periods has been increasing with each recurrence. The latest 

growth spurt has been fueled by the widespread availability of big data, and 

the story of NIPS has been one of preparing for this day to come.





Timeline

1971—Noam Chomsky publishes “The Case against B. F. Skinner” in the 

New York Review of Books, an essay that steered a generation of cognitive 

scientists away from learning.

1982—Claude Shannon publishes the seminal book A Mathematical 

Theory of Communication, which laid the foundation for modern digital 

communication.

1989—Carver Mead publishes Analog VLSI and Neural Systems, found-

ing the field of neuromorphic engineering, which builds computer chips 

inspired by biology.

2002—Stephen Wolfram publishes A New Kind of Science, which explored 

the computational capabilities of cellular automata, algorithms that are 

even simpler than neural networks but still capable of powerful computing.

2005—Sebastian Thrun’s team wins the DARPA Grand Challenge for an 

autonomous vehicle.

2008—Tobias Delbrück develops a highly successful spiking retina chip 

called the “Dynamic Vision Sensor” (DVS) that uses asynchronous spikes 

rather than synchronous frames used in current digital cameras.

2013—U.S. BRAIN Initiative, to develop innovative neurotechnologies 

that accelerate our understanding of brain function, is announced in the 

White House.

III Technological and Scientific Impact





The age of cognitive computing is dawning. Soon we will have self-driving 

cars that drive better than we do. Our homes will recognize us, anticipate 

our habits and alert us to visitors. Kaggle, a crowdsourcing website recently 

bought by Google, ran a $1 million contest for a program to detect lung 

cancer in CT scans and is running a $1.5 million contest for the Depart-

ment of Homeland Security for a program to detect concealed items in 

body scans at airports.1 With cognitive computing, doctor’s assistants will 

be able to diagnose even rare diseases and raise the level of medical care. 

There are thousands of applications like these, and many more have yet to 

be imagined. Some jobs will be lost; others will be created. Although cogni-

tive computing technologies are disruptive and will take time for our soci-

ety to absorb and adjust to, they aren’t existential threats. On the contrary, 

we are entering an era of discovery and enlightenment that will make us 

smarter, live longer, and prosper.

I was a speaker at an IBM-sponsored cognitive computing conference in 

San Francisco in 2015.2 IBM was making a big investment in Watson, a pro-

gram based on collections of large databases of facts about everything from 

history to popular culture that could be interrogated with a wide range of 

algorithms using a natural language interface. Ken Jennings had won 74 

games in a row over 192 days on Jeopardy!, the longest winning streak in 

the history of the game show. When Watson nonetheless beat Jennings on 

Jeopardy! in 2011, the world took notice.

In the taxi from my hotel to the conference, I overheard two IBM execu-

tives in the back of the car talking shop. IBM was rolling out a platform 

around Watson that could be used to organize and answer questions from 

unstructured databases in specialized areas such as health and financial ser-

vices. Watson can answer questions and make recommendations that are 

based on more data than any human could possibly know, although, of 

course, as with other machine learning programs, it still takes humans to 

ask the questions and choose among the recommendations made.

12 The Future of Machine Learning
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IBM had long since parted with its hardware division, and its computer 

services division was no longer competitive. By banking on Watson, IBM 

was counting on its software division to help replace a $70 billion revenue 

stream. The company has invested $200 million in a new global headquar-

ters for its Watson Internet of Things business in Munich,3 one of IBM’s 

largest investments ever in Europe in response to growing demand from 

more than 6,000 customers who want to transform their operations with 

artificial intelligence—and only part of the company’s global plan to invest 

$3 billion in cognitive computing. But many other companies are also mak-

ing major investments into AI and it is too early to say which bets will be 

winners, and who will be the losers.

Life in the Twenty-First Century

In traditional medicine, the same treatment was typically made to fit all 

patients suffering from a given condition or illness, but now, thanks to 

cognitive computing, treatment has become personalized and precise. 

The progress of melanomas, which used to be death sentences, can now 

be halted and even reversed in many patients by sequencing a patient’s 

cancer cells and designing a specific cancer immunotherapy treatment for 

that person’s cancer. Although this treatment today costs $250,000, it will 

eventually be affordable for almost every melanoma patient since the base 

cost of sequencing a patient’s cancer genome is only a few thousand dollars 

and the cost of the necessary monoclonal antibodies only a few hundred 

dollars. Medical decision making will get better and less expensive once 

sufficient data have been amassed from patients with a wide range of muta-

tions and outcomes. Some lung cancers are also treatable with the same 

approach. Pharmaceutical companies are investing in cancer immunother-

apy research, and many other cancers may soon be treatable. None of this 

would have been possible without machine learning methods for analyzing 

huge amounts of genetic data.

I served on the committee that advised the director of the National 

Institutes of Health (NIH) on recommendations for the U.S. Brain Research 

through Advancing Innovative Neurotechnologies (BRAIN) Initiative. Our 

report emphasized the importance of probabilistic and computational 

techniques for helping us interpret data being generated by the new neu-

ral recording techniques.4 Machine learning algorithms are now used to 

analyze simultaneous recordings from thousands of neurons, to analyze 

complex behavioral data from freely moving animals and to automate 

reconstructions of 3D anatomical circuits from serial electron microscopic 
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digital images. As we reverse engineer brains, we will uncover many new 

algorithms discovered by nature.

The NIH has funded basic research into neuroscience over the last fifty 

years, but the trend is to direct more and more of its grant support toward 

translational research with immediate health applications. Although we 

certainly want to translate what already has been discovered, if we do not 

also fund new discoveries now, there will be little or nothing to translate to 

the clinic fifty years from now. This also is why it is so important to start 

research programs like the BRAIN Initiative today in order to find future 

cures for debilitating brain disorders like schizophrenia and Alzheimer’s 

disease.5

The Future of Identity

In 2006, the social security numbers and birth dates of 26.5 million veterans 

were stolen from the home of a Department of Veterans Affairs employee. 

Hackers wouldn’t even have had to decrypt the database since the Veter-

ans Administration was using social security numbers as the identifiers for 

veterans in their system. With a social security number and a birth date, a 

hacker could have stolen any of their identities.

In India, more than a billion citizens can be uniquely identified by their 

fingerprints, iris scans, photographs, and twelve-digit identity numbers 

(three digits more than social security numbers). India’s Aadhaar is the 

world’s largest biometric identity program. In the past, an Indian citizen 

who wanted a public document faced endless delays and numerous mid-

dlemen, each requiring tribute. Today, with a quick bioscan, a citizen can 

obtain subsidized food entitlements and other welfare benefits directly, and 

many poor citizens who lack birth certificates now have a portable ID that 

can be used to identify them anytime and anywhere in seconds. Identity 

theft that siphoned off welfare support has been stopped. A person’s iden-

tity cannot be stolen, unless the thief is prepared to cut off the fingers and 

enucleates the eyes of that person.6

The Indian national registry was a seven-year project for Nandan Nile-

kani,7 the billionaire and cofounder of Infosys, an outsourcing company. 

Nilekani’s massive digital database has helped India to leapfrog ahead of 

many developed countries. According to Nilekani: “A small, incremental 

change multiplied by a billion is a huge leap. …  If a billion people can get 

their mobile phone in 15 minutes instead of one week that’s a massive pro-

ductivity injection into the economy. If a million people get money into 

their bank accounts automatically that’s a massive productivity leap in the 

economy.”8
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The advantages of having a digital identity database are balanced by a 

loss of privacy, especially when the biometric ID is linked to other data-

bases, such as bank accounts, medical records, and criminal records, and 

other public programs such as transportation. Privacy issues are already par-

amount in the United States and many other countries where databases are 

being linked, even when their data are anonymized.9 Thus our cell phones 

already track our whereabouts, whether we want them to or not.

The Rise of Social Robots

Movies often depict artificial intelligence as a robot that walks and talks like 

a human. Don’t expect an AI that looks like the German-accented Termi-

nator in the 1984 science fiction/fantasy film The Terminator. But you will 

communicate with AI voices like Samantha’s in the 2013 romance/science 

fiction film Her and interact with droids like R2-D2 and BB-8 in the 2017 

science fiction/fantasy film Star Wars: The Force Awakens. AI is already a 

part of everyday life. Cognitive appliances like Alexa in the Amazon Echo 

speaker already talk to you, happy to help make your life easier and more 

rewarding, just like the clocks and tea setting in the 2017 fantasy/romance 

film Beauty and the Beast. What will it be like to live in a world that has such 

creatures in it? Let’s take a look at our first steps toward social robots.

The current advances in artificial intelligence have primarily been on 

the sensory and cognitive sides of intelligence, with advances on motor 

and action intelligence yet to come. I sometimes begin a lecture by saying 

that the brain is the most complex device in the known universe, but my 

wife, Beatrice, who is a medical doctor, often reminds me that the brain 

is only a part of the body, which is even more complex than the brain, 

although the body’s complexity is different, arising from the evolution of  

mobility. 

Our muscles, tendons, skin, and bones actively adapt to the vicissitudes 

of the world, to gravity, and to other human beings. Internally, our bodies 

are marvels of chemical processing, transforming foodstuffs into exquisitely 

crafted body parts. They are the ultimate 3D printers, which work from the 

inside out. Our brains receive inputs from visceral sensors in every part of 

our bodies, which constantly monitor the internal activity, including at the 

highest levels of cortical representation, and make decisions on internal 

priorities and maintain a balance between all the competing demands. In 

a real sense, our bodies are integral parts of brains, which is a central tenet 

of embodied cognition.10
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Rubi

Javier Movellan (figure 12.1) is from Spain and was a faculty member and 

co-director of the Machine Perception Laboratory at the Institute for Neu-

ral Computation at UC, San Diego. He believed that we would learn more 

about cognition by building robots that interact with humans than by 

conducting traditional laboratory experiments. He built a robot baby that 

smiled at you when you smile at it, which was remarkably popular with 

passersby. Among Javier’s conclusions after studying babies interacting 

with their mothers was that babies maximize smiles from their moms while 

minimizing their own effort.11

Javier’s most famous social robot, Rubi, looks like a Teletubby, with an 

expressive face, eyebrows that rise to show interest, camera eyes that move 

around, and arms that grasp (figure 12.2). In the Early Childhood Educa-

tion Center at UCSD, 18-month-old toddlers interacted with Rubi using the 

tablet that serves as Rubi’s tummy. 

Toddlers are difficult to please. They have very short attention spans. 

They play with a toy for a few minutes, then lose interest and toss it away. 

How would they interact with Rubi? On the first day, the boys yanked off 

Figure 12.1

Javier Movellan being interviewed by The Science Network in his robot workshop at 

UC, San Diego. Javier pioneered social robots in classrooms and programmed a so-

cial robot, Rubi, to hold the attention of 18-month-old toddlers. Courtesy of Roger 

Bingham.
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Rubi’s arms, which, for the sake of safety, were not industrial strength. After 

some repair and a software patch, Javier tried again. This time, the robot 

was programmed to cry out when its arms were yanked. This stopped the 

boys, and made the girls rush to hug Rubi. This was an important lesson in 

social engineering.

Toddlers would play with Rubi by pointing to an object in the room, 

such as a clock. If Rubi did not respond by looking at that object in a nar-

row window of 0.5 to 1.5 seconds, the toddlers would lose interest and drift 

away. Too fast and Rubi was too mechanical; too slow and Rubi was boring. 

Once a reciprocal relationship was formed, the children treated Rubi like a 

sentient being rather than a toy. When the toddlers became upset after Rubi 

was taken away (to the repair shop for an upgrade), they were told instead 

that Rubi was feeling sick and would stay home for the day. In one study, 

Rubi was programmed to teach toddlers Finnish words, which they picked 

up with as much alacrity as they had English words; a popular song was a 

powerful reinforcer.12

One of the concerns about introducing Rubi into a classroom setting 

was that teachers would feel threatened by a robot that might someday 

replace them. But quite the opposite occurred: teachers welcomed Rubi as 

Figure 12.2

Rubi interacting with toddlers in a classroom setting. Rubi’s head can swivel, the eyes 

are cameras and the mouth and eyebrows are expressive. The bushy light fibers on 

the top of the head change colors with Rubi’s moods. Courtesy of Javier Movellan.
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an assistant that helped keep the class under control, especially when they 

had visitors in the classroom. An experiment that could have revolution-

ized early education was the “thousand Rubi project.” The idea was to mass 

produce Rubis, place them in a thousand classrooms, and collect data over 

the Internet from thousands of experiments each day. One of the problems 

with educational studies is that what works in one school may not work 

in another because there are so many differences between schools, espe-

cially between teachers. A thousand Rubis could have tested many ideas for 

how to improve educational practice and could have probed the differences 

between schools serving different socioeconomic groups around the coun-

try. Although resources never materialized to run the project, it’s still a great 

idea, which someone should pursue.

Two-legged robots are unstable and require a sophisticated control sys-

tem to keep them from falling over. And, indeed, it takes about twelve 

months before a baby biped human starts walking without falling over. 

Rodney Brooks (figure 12.3), who made a brief appearance in chapter 2, 

Figure 12.3

Rodney Brooks oversees Baxter, who is preparing to place a plug into a hole on the 

table. Brooks is a serial entrepreneur who previously founded iRobot, which makes 

Roombas, and now Rethink, which makes Baxters. Courtesy of Rod Brooks.
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wanted to build six-legged robots that could walk like insects. He invented 

a new type of controller that could sequence the actions of the six legs to 

move his robo-cockroach forward and remain stable. His novel idea was to 

let the mechanical interactions of the legs with the environment take the 

place of abstract planning and computation. He argued that, for robots to 

accomplish everyday tasks, their higher cognitive abilities should be based 

on sensorimotor interaction with the environment, not on abstract reason-

ing. Elephants are highly social, have great memories, and are mechanical 

geniuses,13 but they don’t play chess.14 In 1990, Brooks went on to found 

iRobot, which has sold more than 10 million Roombas to clean even more 

floors.

Industrial robots have stiff joints and powerful servomotors, which 

makes them look and feel mechanical. In 2008, Brooks started Rethink 

Robotics, a company that built a robot called “Baxter” with pliant joints, 

so its arms could be moved around (figure 12.3). Instead of having to write 

a program to move Baxter’s arms, each arm could be moved through the 

desired motions, and it would program itself to repeat the sequence of 

motions.

Movellan went one step further than Brooks and developed a robot baby 

called “Diego San” (manufactured in Japan),15 whose motors were pneu-

matic (driven by air pressure) and all of whose forty-four joints were com-

pliant compared to the stiff torque motors used in most industrial robots 

(figure 12.4). The motivation for making them so is that when we pick 

something up, every muscle in our bodies is involved to some extent (when 

we move only one joint at a time, we look like robots). This makes us bet-

ter able to adapt to changing conditions of load and interaction with the 

world. The brain can smoothly control all of the degrees of freedom in  

the body—all the joints and muscles—at the same time and the goal of the 

Diego San project was to figure out how. Diego San’s face had twenty-seven 

moving parts and could express a wide range of human emotions.16 The 

movements made by the robot baby were remarkably lifelike. Although 

Javier had several successful robot projects to his name, Diego San was not 

one of them, however. He simply didn’t know how to make the robot baby 

perform as fluidly as a human baby.

Facial Expressions Are a Window into Your Soul

Imagine what it would be like to watch your iPhone as stock prices plum-

met and have it ask you why you’re upset. Your facial expressions are a 

window into the emotional state of your brain and deep learning can now 
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see into that window. Cognition and emotion have traditionally been con-

sidered separate functions of the brain. It was generally thought that cogni-

tion was a cortical function and emotions were subcortical. In fact, there 

are subcortical structures that regulate emotional states, structures like the 

amygdala, which is engaged when the emotional levels are high, especially 

fear, but these structures interact strongly with the cerebral cortex. Engage-

ment of the amygdala in social interaction, for example, will lead to a  

stronger memory of the event. Cognition and emotions are intertwined.

In the 1990s, I collaborated with Paul Ekman (figure 12.5), a psycholo-

gist at UC, San Francisco, who is the world’s leading expert on facial expres-

sions and the real-world inspiration for Dr. Cal Lightman in the TV drama 

series Lie to Me, though Paul is a lot nicer than Cal. Ekman went to Papua 

New Guinea to find out if preindustrial cultures responded emotionally 

Figure 12.4

Diego San, a robot baby. Pneumatic actuators allowed all of the joints to move pli-

antly, so that you could shake the robot’s hand. Face by David Hanson and Hanson 

Robotics. For facial animation, see “Diego Installed,” Courtesy of Javier Movellan. 

https://www.youtube.com/watch?v=knRyDcnUc4U/.
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with the same facial expressions that we do. He found six universal expres-

sions of emotion in all the human societies he studied: happiness, sadness, 

anger, surprise, fear, and disgust. Since then other universal facial expres-

sions have been suggested, but there is no universal agreement, and some 

expressions, like fear, are interpreted differently in a few isolated societies.

In 1992, Ekman and I organized a Planning Workshop on Facial Expres-

sion Understanding sponsored by the National Science Foundation.17 At 

the time, it was quite difficult to get support for research on facial expres-

sions. Our workshop brought researchers from neuroscience, electrical engi-

neering, and computer vision together with psychologists, which opened a 

Figure 12.5

Paul Ekman with the Fore people of Papua New Guinea in 1967. He found evidence 

for six universal facial expressions of emotions, happiness, sadness, anger, surprise, 

fear and disgust. Paul consulted for the TV series Lie to Me, critiquing each episode 

for scientific validity. The character Dr. Cal Lightman is based loosely on Ekman. 

Courtesy of Paul Ekman.
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new chapter in analyzing faces. It was a revelation to me that, despite how 

important the analysis of facial expressions could be for so many areas of 

science, medicine, and the economy, it was being neglected by funding 

agencies.

Ekman developed the Facial Action Coding System (FACS) to monitor 

the status of each of the forty-four muscles in the face. FACS experts trained 

by Ekman take an hour to label a minute of videos, one frame at a time. 

Expressions are dynamic and can extend for many seconds, but Ekman dis-

covered that there were some expressions that lasted for only a few frames. 

These “microexpressions” were emotional leaks of suppressed brains states 

and were often telling, sometimes revealing unconscious emotional reac-

tions. Microexpressions of disgust during a marriage counseling session, for 

example, were a reliable sign that the marriage would fail.18

In the 1990s, we used video recordings from trained actors who could 

control every muscle on their face, as could Ekman, to train neural net-

works with backprop to automate the FACS. In 1999, a network trained 

with backprop by my graduate student Marian Stewart Bartlett (figure 12.6) 

had an accuracy of 96 percent in the lab, with perfect lighting, fully frontal 

faces, and manual temporal segmentation to video,19 a performance good 

Figure 12.6

Marian Stewart-Bartlett demonstrating facial expression analysis. The time lines 

are the output of deep learning networks that are recognizing facial expression for 

happiness, sadness, surprise, fear, anger, and disgust. Courtesy of Marian Stewart-

Bartlett. Robert Wright/LDV Vision Summit 2015.
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enough to merit an appearance by Marni and me on Good Morning America 

with Diane Sawyer on April 5, 1999. Marni continued to develop the Com-

puter Expression Recognition Toolbox (CERT) as a faculty member in the 

Institute for Neural Computation at UC, San Diego,20 and as computers 

became faster, CERT approached real-time analysis, so that it could label 

the changing facial expressions in a video stream of a person.

In 2012, Marni Bartlett and Javier Movellan started a company called 

“Emotient” to commercialize the automatic analysis of facial expressions. 

Paul Ekman and I served on its Scientific Advisory Board. Emotient devel-

oped deep learning networks that had an accuracy of 96 percent in real 

time and with natural behavior, under a broad range of lighting condi-

tions, and with nonfrontal faces. In one of Emotient’s demos, its networks 

detected within minutes that Donald Trump was having the highest emo-

tional impact on a focus group in the first Republican primary debate. It 

took the pollsters days to reach the same conclusion and pundits months 

to recognize that emotional engagement was key to reaching voters. The 

strongest facial expressions in the focus group were joy followed by fear. 

Emotient’s deep learning networks also predicted which TV series would 

become hits months before the Nielsen ratings were published. Emotient 

was bought by Apple in January 2016, and Marni and Javier now work for 

Apple.

In the not too distant future, your iPhone may not only be asking you 

why you’re upset; it may also be helping you to calm down.

The Science of Learning

Twelve years ago, at the 2005 NIPS Conference in Vancouver, I sat down for 

breakfast with Gary Cottrell, a colleague in the Department of Computer 

Science and Engineering at UC, San Diego. Gary was a part of the original 

parallel distributed processing (PDP) group from the 1980s and is one of its 

last survivors at UCSD. He is also one of the last holdouts from the 1960s, 

with a ponytail and a beard gone gray. He had come across a National Sci-

ence Foundation announcement requesting proposals for Science of Learn-

ing Centers. What caught his eye was the $5 million per year budget for 

five years, renewable for an additional five years. He wanted to submit a 

proposal and asked if I could help out. When he said that, if it was success-

ful, he would never have to write another grant proposal, I told him that, if 

it was successful, this would be a career-ending grant. He chuckled and we 

started the ball rolling.
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Ultimately, our proposal was successful and, as I had predicted, the 

reporting was bone crushing with 300-page annual reports, but the sci-

ence was spectacular. Our Temporal Dynamics of Learning Center (TDLC) 

includes over 100 researchers at eighteen institutions around the world. 

Of the six Science of Learning Centers funded by the NSF, ours was the 

most neuroscience and engineering oriented and we incorporated the lat-

est advances in machine learning into our projects (figure 12.7).21 Rubi and 

CERT were two of the projects funded by the Temporal Dynamics of Learn-

ing Center. We also had a mobile EEG lab, where subjects were free to roam 

in a virtual environment while recording their brain waves. In most EEG 

labs, the subject is required to sit still and not to blink to avoid artifacts. 

We used Independent Component Analysis (ICA) to cancel movement arti-

facts, allowing us to look at brain activity while subjects actively explored 

the environment and interacted with other humans.

Here are a few of the many projects that have been undertaken by TDLC 

researchers:

Figure 12.7

New Science of Learning includes machine learning and neuroscience along with 

insights from psychology and education. From Meltzoff, Kuhl, Movellan, and  

Sejnowski, “Foundations for a New Science of Learning,” figure 1.



184 Chapter 12

• April Benasich at the Center for Molecular and Behavioral Neuroscience 

at Rutgers developed a test that can predict whether a baby will have 

deficits in language acquisition and learning based on the baby’s timing 

in auditory perception; she showed that these deficits could be corrected 

by adaptively manipulating the timing of sounds and reward feedback 

to allow the baby to develop normal hearing, speaking, and learning.22 

The experiments on which these results are based followed babies longi-

tudinally from three months to five years of age. Even normally develop-

ing babies benefited from the interactive environment. April launched 

AAB Research LLC in 2006 to bring rapid auditory processing technology 

(RAPT) into the home to enhance an infant’s ability to learn.

• Marian Stewart Bartlett and Javier Movellan used machine learning to 

register facial expressions of students automatically,23 which could then 

alert the teacher when a student was looking frustrated and likely not 

comprehending what was being taught. With deep learning, this can be 

done automatically and accurately today for every child in a class at the 

same time. There are many other applications for facial expression analy-

sis in marketing, psychiatry, and forensics that are untapped.

• Harold Pashler at UC, San Diego, and Michael Mozer at the University of 

Colorado at Boulder investigated improved long-term retention of learn-

ing through personalized review spaced out over time versus cramming 

by extending previous studies of college students over time frames of 

months to a study of K–12 students over time frames of years.24 They 

showed that the optimal spacing for learning was longer when longer-

term retention was required, and they implemented their optimal review 

schedule for students in language courses with excellent results.

• Beth Rogowsky, a TDLC postdoctoral fellow, Paula Tallal at Rutgers, and 

Barbara Calhoun at Vanderbilt University showed that there was no sta-

tistical difference between learning using spoken or written materials, 

and no relationship between preferred learning style and instructional 

method in either immediate or delayed comprehension.25 That there is 

no benefit in adapting to a student’s preferred learning style means that 

the large industry that promotes training and testing materials for indi-

vidual learning styles is not adding value to the classroom.

• Paula Tallal was instrumental in the 2014 launch of the $15 million 

Global Learning X-Prize, which incentivizes innovation in education 

and whose goal is to develop open-source and scalable software that will 

enable children in developing countries to learn basic reading, writing, 

and arithmetic skills within eighteen months. The beneficial impact of 

research done for the Global Learning X-Prize will reverberate through-

out the world for decades to come.
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• TDLC Science Director Andrea Chiba presented research on how all learn-

ing changes the structure of the brain at the 2014 International Conven-

tion on the Science of Learning in Shanghai,26 much to the surprise of 

many delegates who believed that children come into the world with a 

set potential and that education is wasted on those who are less capable 

or too old to learn. A vast reservoir of human potential exists around the 

world that is not being tapped.

We found that the biggest problems in education weren’t scientific, but 

social and cultural. There are 13,500 school districts in the United States, 

each with its own school board that decides on the curriculum, teacher 

qualifications, and best practices; it would take decades to reach all of them 

and address each unique situation. Even before teachers can teach, they 

have to manage the classroom, which can be especially challenging for 

early grades and inner city schools. Parents making demands may fail to 

appreciate the high rate of teacher burnout due to a lack of resources, and 

the influence of teachers unions, which often block progressive efforts.

Teaching is fundamentally a labor-intensive activity. The best and most 

effective way to teach is through one-to-one interactions between skilled 

adult teachers and students.27 We are saddled with an assembly-line system 

that was designed for mass education, in which students are segregated by 

age and are taught in large classes where teachers impart the same lessons 

year after year. This may be a good way to build an automobile and may 

have been adequate at a time when only a basic education was needed for 

the workforce, but this system is failing us today when jobs require a higher 

level of training and lifelong learning to renew job skills. Going back to 

school as an adult can be painful and impractical. The information revolu-

tion that we are living through has overtaken the generational time scale. 

Fortunately, new technologies are coming online that may change how we 

learn. The Internet is changing the learning landscape in ways we could 

never have anticipated when our Science of Learning Center was launched 

in 2006.

Learning How to Learn

Massively open online courses (MOOCs) burst on the scene in 2011 with a 

high-visibility article in the New York Times on the popularity of an online 

course on artificial intelligence at Stanford.28 The large numbers of students 

who enrolled in MOOCs and their unprecedented reach through the Inter-

net caught the attention of the world. Almost overnight, new companies 

were founded to develop and freely distribute lectures online by some of 

the best educators in the world. These are available on demand anytime 
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and anyplace where there is an Internet connection. In addition to the 

lectures, the courses include quizzes, exams, forums where learners can ask 

questions, teaching assistants, and self-organized local “meet-ups” where 

students can discuss their course in an informal setting. The audience for 

MOOCs has greatly expanded—in 2015, the number of “MOOCers” dou-

bled, from an estimated 17 million to more than 35 million. MOOCs bypass 

all the gatekeepers in the educational establishment.

I met Barbara Oakley at a meeting sponsored by the National Academy 

of Sciences at UC, Irvine, in January 2013. She is a professor of electrical 

engineering at the Oakland University in the cities of Auburn Hills and 

Rochester Hills, Michigan, even though she did poorly in mathematics and 

science in school. She was a humanities major, a captain in the U.S. Army, 

who worked as a Russian translator on Soviet trawlers in the Bering Sea 

before going back to school, where she overcame her mental block with 

math and received a doctorate in electrical engineering. Over dinner, I dis-

covered that Barbara and I had similar views on learning and that she was 

writing a book, A Mind for Numbers: How to Excel at Math and Science (Even If 

You Flunked Algebra). I invited her to UC, San Diego, to give a TDLC lecture 

for high school students and teachers.

Barbara was a great hit with the students, and it was clear that she was 

a gifted teacher. Her approach and practical insights had roots in what  

we know about the brain, so we teamed up to develop a MOOC for  

Coursera called “Learning How To Learn: Powerful Mental Tools to Help 

You Master Tough Subjects” (figure 12.8; https://www.coursera.org/learn/

learning-how-to-learn/) that debuted in August 2014. It is currently the 

world’s most popular MOOC, with over 3 million registered learners in its 

first four years, and it continues to attract 1,000 new learners a day from 

over 200 countries. “Learning How to Learn” gives you the tools you need 

to become a better learner based on our knowledge of how the brain learns. 

Feedback from our learners has been overwhelmingly positive, and we 

developed a second MOOC called “Mindshift” to help those who want to 

shift to new jobs or change their lifestyles. Both of these MOOCs are freely 

available.

“Learning How to Learn” gives practical advice on how to become a 

better learner, how to handle test anxiety, how to avoid procrastination, 

and what we know about how the brain learns. It is a free, month-long 

course with 5- to 10-minute video clips, quizzes, and tests that have been 

translated into more than twenty languages. One of the cornerstones of 

the course is what your unconscious brain can do for you while you are 

doing something else. Henri Poincaré was an eminent nineteenth-century 
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mathematician who once described how he finally solved a difficult math-

ematical problem he had been working on intensively for weeks without 

success. He took a vacation. As he was stepping onto a bus in the south of 

France, the solution to the problem suddenly came to him, unbidden, from 

a part of his brain that had continued to work on the problem while he 

was enjoying his vacation. He knew he had the right path to a proof and 

completed it when he returned to Paris. His intensive work on the problem 

before had prepared his brain so that his unconscious could work on it 

while he was relaxing. Both phases are equally important for creativity.

Surprisingly, your brain can work on a problem even while you’re sleep-

ing and not aware of anything. But it does this only if you concentrate on 

trying to solve the problem before falling asleep. In the morning, as often 

as not, a fresh insight will pop into your mind that can help you solve the 

problem. The intense effort before a vacation or falling asleep is important 

for priming your brain; otherwise, it’s just as likely to work on some other 

problem. There is nothing special about math or science in this regard—

your brain will work just as hard solving social problems as on math and 

science problems if that is what has been on your mind recently.

One of the most satisfying outcomes from “Learning How to Learn” was 

receiving letters from happy learners thanking us for the best course they 

Figure 12.8

Barbara Oakley introducing “Learning How to Learn” MOOC. Over 3 million learn-

ers have taken the course, making it the most popular Internet course in the world. 

Courtesy of Barbara Oakley.
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took or how it influenced their career choices.29 Teachers also wrote us that 

they were incorporating lessons from “Learning How to Learn” into their 

classes.

We had originally aimed “Learning How to Learn” at high school and 

college students, but they turned out to be less than 1 percent of all the 

learners who took the course. Because schools are being driven to teach to 

“Common Core” tests, they have no time for teaching their students how 

to learn, which would be far more helpful. And asking school districts to 

adopt “Learning How to Learn” would be an uphill battle since operating 

budgets at schools are limited. School districts are not open to revamping 

their curricula to incorporate the teachings in “Learning How to Learn” 

on a large scale as any effort at scale requires an expensive reworking of 

schedules, retraining of teachers, and development of new teaching materi-

als. But somehow we need to reach twelve-year-olds before they enter high 

school. Barbara and I have written a book aimed at this audience in hopes it 

will reach these younger students before they hit roadblocks in their math 

courses, which often occurs in middle school.30

A different learning model from classroom courses that are taken “all-

or-none,” MOOCs are more like books you can pick up and read anytime, 

selectively: learners have a tendency to “graze” and selectively choose lec-

tures that meet their immediate needs. Originally thought to be an alter-

native to the traditional classroom, MOOCs are finding a complementary 

place in the educational firmament that is different from other teaching 

venues, one that fulfills learners’ needs in a way more conventional educa-

tional approaches do not. Thus, for example, MOOCs have been adopted 

in flipped classes, in which students watch selected lectures on their own 

time and the teacher leads a discussion of the material in the class. Our 

educational system was designed for the industrial age, and the knowledge 

imparted in schools was all you needed to hold a job and be a productive 

citizen for the rest of your life. Today, the knowledge imparted by schools 

is already obsolete by the time students graduate. MOOCs are an end run 

around the educational system by going directly into homes. At Coursera, 

the peak in the demographics of those enrolling online is in the 25–35 age 

bracket, and more than half of enrollees have a college education. These 

are young adults in the workforce who need new skills and are learning 

them online. More fundamental changes will be needed in our educational 

system to adapt our brains to rapidly expanding jobs in the information 

sector of the economy. For example, gathering information through the 

Internet requires judgment and basic skills in formulating search terms and 

sorting through false trails. Alas, there seems to be no time to teach basic 
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Internet skills in the school day, even though students would benefit from 

learning how to actively seek information rather than passively receiving 

lessons.

Founded by Sebastian Thrun of self-driving-car fame, Udacity is another 

educational organization that makes MOOCs. In addition to free access 

to its courses, Udacity also partners with companies that want to upgrade 

the skills of their workers. Udacity creates MOOCs tailored to the compa-

ny’s needs, and employees are motivated to take them. This is a win-win-

win for employers, employees, and Udacity. Udacity also has clusters of 

courses that lead to nanodegrees in topics such as self-driving car technol-

ogy (for $800), which come with a money-back guarantee of finding a job 

in 6 months.31The educational sector outside traditional schools is evolv-

ing rapidly, and MOOCS can generate a variety of solutions for lifelong  

learning.

Our follow-up MOOC “Mindshift: Break through Obstacles to Learn-

ing and Discover Your Hidden Potential” (https://www.coursera.org/learn/

mindshift/) was launched in April 2017. It is accompanied by a new book 

by Barbara Oakley,32 which uses case histories (mine included) to illustrate 

the issues that arise when you want to change your life in some way, based 

on experiences that others have had. In my case, I switched from physics to 

neurobiology, but in another case, a successful concert soloist gave up his 

career to become a medical doctor. Job shifts are becoming more common, 

and “Mindshift” was designed to make the process easier. Mindshift is now 

the no. 3 most popular MOOC in the world. 

Another way to become better learners is through interactive computer 

games. Companies like Lumosity offer games you can play online that claim 

to improve memory and attention. The problem is that the research to back 

such claims is often lacking or of poor quality, especially with respect to the 

transfer of training to real-world tasks. But these are early days and better 

research is beginning to help us sort out what works from what doesn’t. The 

results are often surprising and counterintuitive.

Brain Training

The video games that are the most effective in improving cognitive func-

tion broadly are those where you have to chase zombies, war games where 

you have to kill the bad guys, and race car driving games. Daphne Bavelier 

at the University of Geneva has shown that playing first-person shooter 

games like Medal of Honor: Allied Assault improved perception, attention, 

and cognition—in particular, vision, multitasking, and task switching—and 
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that they led to faster decision making as well.33 She concluded that play-

ing some of these shooter games could make older brains react as quickly 

as younger brains (good news for anyone who’s growing older). But some 

shooter games may also reduce long-term retention.34 Each game has vari-

ous benefits and liabilities that need to be examined individually.

Adam Gazzaley at UC, San Francisco, has custom-designed a three-

dimensional video game called NeuroRacer that improves your ability to 

multitask, based on research showing that the activity of neuromodulators 

in brains is important for attention, learning, and memory.35 NeuroRacer 

players steer a car along a winding, hilly road while keeping an eye out 

for some signs that randomly pop up while ignoring others. This requires 

players to multitask using several cognitive skills such as attention and task 

switching. In testing NeuroRacer, Adam and his colleagues found that, after 

training, subjects significantly improved these skills and achieved higher 

scores on working memory and sustained attention tasks that were not part 

of the training. Furthermore, their performances were better than those 

of untrained twenty-year-olds, and their improved skills were retained six 

months later without practice.36 NeuroRacer is now in clinical trials as a ther-

apy for patients with attention and memory deficits.

Paula Tallal, then at Rutgers, and Michael Merzenich, then at UCSF, 

started a company in 1997 called “Scientific Learning” for children with 

language and reading disorders (such as dyslexia). Speech understanding 

depends on hearing fast acoustic transitions. For example, the difference 

between hearing “ba,” “ga,” or “da” depends on timing differences in the 

millisecond range at the beginning of the syllable. Children who cannot 

detect these timing differences are at a learning disadvantage since they 

confuse words that have these sounds. In order to learn to read, a child 

must be able to recognize and distinguish the brief sounds that the letters 

in words represent. Tallal and Merzenich developed what is now a large 

series of computer games, called “Fast ForWord,” that improve auditory 

discrimination, language, and reading comprehension by first exaggerat-

ing acoustic time differences within syllables, words, and sentences, then 

gradually reducing these differences as the child gets better at each level 

of language and reading.37 Top rated among educational games, Fast For-

Word computer games have been used in 6,000 schools and by more than 

2.5 million children. They are also being used to help children learn Eng-

lish as a second language in more than fifty-five countries. Merzenich has 

gone on to develop BrainHQ (https://www.brainhq.com), a game based on 

similar scientific principles, aimed at reducing cognitive decline in aging  

adults.
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You can also improve your motor skills with brain exercises. Aaron Seitz 

at UC, Riverside, developed a computer program that sharpens visual per-

ception and reaction times. After using this program, the baseball team 

reported having better vision, fewer strikeouts, and more runs created, and 

they ultimately won 4–5 more games out of a 54-game season.38 Seitz devel-

oped an inexpensive app called “UltimEyes” that made his research avail-

able to the public, although the Federal Trade Commission has stopped its 

dissemination until more studies can confirm his claims.39 

Improvement in certain cognitive skills tends to transfer to other cogni-

tive skills when you play reaction time games, but not when you play many 

other, domain-specific games, such as memory games. Although we’re get-

ting better at designing interactive video games that improve our brains, 

are fun to play, and can be delivered in an app, more research is needed to 

understand the conditions when transfer occurs. The potential for cogni-

tive improvement worldwide is enormous.

The AI Business

At the opening session of the 2015 NIPS Conference, I welcomed the par-

ticipants while wearing a NASCAR-style jacket with logos from all forty-two 

of our sponsors (figure 12.9). At the 2016 NIPS Conference in Barcelona, 

there were sixty-five sponsors, too many patches to fit on a jacket, and 

ninety-three sponsors supported the 2017 NIPS conference in Long Beach. 

This explosive growth will eventually end, but its reverberations through 

society could last for decades. These sponsoring companies send recruiters 

to NIPS conferences, eager to hire talented researchers who are in short 

supply. Many of my colleagues have taken jobs with Google, Microsoft, 

Amazon, Apple, Facebook, Baidu, and many start-up companies. This has 

stripped talent from universities. Sebastian Thrun has estimated that when 

a start-up self-driving company like Otto or Cruise is bought by a larger 

company, the cost is $10 million per machine learning expert.40

Geoffrey Hinton became an employee of Google in 2013 when it bought 

his company, DNNresearch, which consisted of Geoffrey and two of his 

graduate students at the University of Toronto. He now has access to more 

computer power than he could ever dream of having in Toronto, but even 

more important is the massive amount of data that Google has available. 

Google Brain is an extraordinary collection of highly talented engineers 

and scientists assembled by Jeff Dean, who designed MapReduce, Google’s 

file system upon which all their services depend. When you get Google 

to translate for you, it now uses deep learning designed by Dean’s Google 
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Brain team. When you google a search term, deep learning helps to rank the 

results. When you talk to the Google assistant, it uses deep learning to rec-

ognize the words you are saying, and as it gets better at holding a conversa-

tion with you, it will be using deep learning to serve you better. Google has 

gone all out for deep learning and so has the rest of the high-tech industry, 

but this is just the beginning.

The United States is losing its lead in artificial intelligence, and, 

by the time you read this, other countries may have already raced past  

us. The Vector Institute in Toronto was launched in March 2017, with 

C$175 million dollars of support from the Canadian and Ontario govern-

ments, the University of Toronto, and private industry.41 Vector’s goal is to 

be a world-leading center for AI research; to graduate the greatest number 

of doctoral and master’s students in machine learning; and to become the 

engine for an AI supercluster that drives the economy of Toronto, Ontario, 

and, indeed, all of Canada. But Canada will have steep competition from 

China, which is training thousands of machine learning engineers, and 

Figure 12.9

NASCAR jacket Terry Sejnowski wore to open the 2015 NIPS Conference in Montreal. 

Sponsors ranged from top-tier Internet companies to financial and media companies. 

They all have a stake in deep learning. Courtesy of the NIPS Foundation.
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where neuromorphic computing is one of the two wings of its Brain Project. 

Spurred by AlphaGo’s defeat of Ke Jie in 2017, which had much the same 

impact on China that Sputnik did on the United States in 1957, Beijing has 

launched a new multibillion-dollar AI initiative of ambitious projects, start-

ups, and academic research, with the aim of achieving world domination 

by 2030.42 With its vast amounts of medical and personal data and far less 

concern for privacy than in Western democracies, China can leap ahead of 

other countries that keep personal data in proprietary silos. China has also 

targeted agriculture and manufacturing for data collection. Whoever has 

the most data wins, which stacks the deck for China.

More ominously, China also wants “to integrate A.I. into guided missiles, 

use it to track people on closed-circuit cameras, censor the internet and 

even predict crimes.”43 Meanwhile, political leaders in the United States are 

planning to cut back funding for science and technology. In the 1960s, the 

United States made a $100 billion investment in the space race (adjusted 

for inflation),44 which created a satellite industry, gave the United States the 

lead in microelectronics and materials, and made a political statement on 

the strengths of the nation in science and technology. This investment is 

still paying off today since microelectronics and advanced materials are the 

among the few industries where the United States is still competitive. Thus, 

China’s big investment in the AI race could give it the lead in several key 

industries well into the twenty-first century. This is our wakeup call.

AI is accelerating the “intangible” information economy. The output of 

an economy is measured by its Gross Domestic Product (GDP), the total 

value of all goods and services in dollars. This measure was designed for 

an industrial economy whose primary products and services were tangible, 

such as food, automobiles and medical care. However, more and more of 

the value of an information company is not measured by such products. 

The buildings and equipment owned by Microsoft, for example, are only 

worth $1 billion, which is 1 percent of its market value.45 The rest of its 

value is based on software and the expertise of Microsoft’s programmers. 

What value would you put on the information you download with your 

smart phone? We need a new measure that takes into account the value of 

information in all its forms: Gross Domestic Intangibles (GDI), to augment 

GDP as a measure of productivity.46

Present applications of artificial intelligence are based on basic research 

that was done thirty years ago. Applications thirty years from now will 

depend on the basic research being done today, but the best and brightest 

researchers are working for industry and focused on near-term products and 

services. This is being balanced by the best and brightest students who are 
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streaming into machine learning, who a generation ago would have gone 

into investment banking. 

In thinking about the future of AI, we need to take the long view, since 

we are far short of the computing power needed to achieve human levels 

of intelligence. Deep learning networks now have millions of units and bil-

lions of weights. This is a factor of 10,000 fewer than the numbers of neu-

rons and synapses in the human cerebral cortex, where there are a billion 

synapses in a cubic millimeter of tissue. If all the sensors in the world were 

connected to the Internet and interconnected by deep learning networks, it 

might wake up one day and say: 

“Hello, world!”47



I was in Singapore in June 2016 for a week of discussions at the Grand 

Challenges for Science in the 21st Century conference held by the Nan-

yang Technological University. The discussions were wide ranging, from 

cosmology and evolution to science policy.1 W. Brian Arthur, an econo-

mist with an abiding interest in technology,2 pointed out that, in the past, 

technology was driven by the laws of physics: in the twentieth century, we 

sought to understand the physical world using differential equations and 

the mathematics of continuous variables, which vary smoothly across time 

and space. In contrast, today’s technology is driven by algorithms: in the 

twenty-first century, we seek to understand the nature of complexity in 

computer science and biology using discrete mathematics and algorithms. 

Arthur is on the faculty of the Santa Fe Institute in New Mexico, which is 

one of many centers that sprung up in the twentieth century to investigate 

complex systems.3

Algorithms are ubiquitous. We are using algorithms every time we 

google a query.4 The news we read on the Facebook newsfeed is chosen by 

algorithms based on our respective histories of newsfeed clicks, and this 

affects our emotional reactions.5 The intrusion of algorithms into our lives 

is accelerating as deep learning delivers speech recognition and natural lan-

guage capabilities to our cell phones.

An algorithm is a process with a set of discrete steps or rules to be fol-

lowed in performing a calculation or solving a problem. The word “algo-

rithm” is derived from the Latin algorismus, named after the ninth-century 

Persian mathematician al-Khwarizmi and refashioned from “algorism” into 

“algorithm” in the seventeenth century under the influence of the Greek 

arithmos, “number.” Although the origin of algorithms is ancient, digital 

computers have more recently elevated them to the forefront of science 

and engineering.

13 The Age of Algorithms
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Complex Systems

There was a flowering of new approaches to complexity in the 1980s. The 

goal was to develop new ways to understand systems like those found in 

living things, systems more complex than those of physics and chemistry. 

Unlike the simplicity of how rockets move, which follows Isaac Newton’s 

laws of motion, there was no simple way to describe how a tree grows. 

Computer algorithms were used by a colorful group of pioneers to explore 

these age-old questions about living things.

Stuart Kauffman was trained as a physician and became intrigued with 

gene networks in which proteins called “transcription factors” target genes 

and influence whether or not they are activated.6 His models were self-

organizing and based on networks of binary units that were similar in some 

respects to neural networks but on much slower timescales. Christopher 

Langton coined the term “artificial life” in the late 1980s,7 which led to a 

flurry of attempts to understand the principles that underlie the complex-

ity of living cells and the development of complex behaviors. Despite the 

progress we have made in cell biology and molecular genetics to shed light 

on the highly evolved complexity of the molecular mechanisms inside 

cells, the mysteries of life continue to elude us. 

Algorithms offer new opportunities to create worlds with complexities 

that we can compare to our own. Indeed, algorithms discovered in the 

twentieth century have made us rethink the nature of complexity. The 

neural network revolution in the 1980s was driven by similar attempts to 

understand the complexity of the brain, and although our neural network 

models were vastly simpler than the brain’s neural circuits, the learning 

algorithms we developed made it possible to explore general principles such 

as the distribution of information across large populations of neurons. But 

how does the complexity of network function arise from relatively simple 

learning rules? Is there an even simpler system that exhibits a complexity 

that is easier to analyze?

Cellular Automata

Another colorful character with a scientifically serious approach to com-

plexity, Stephen Wolfram (figure 13.1) was a wunderkind, the youngest per-

son ever to earn a doctorate in physics from Caltech at the age of 20, and 

the founder of the Center for Complex Systems Research at the University 

of Illinois in 1986. Wolfram thought that neural networks were too com-

plex and decided instead to explore cellular automata.



The Age of Algorithms 197

Cellular automata typically have only a few discrete values that evolve in 

time, depending on the states of the other cells. One of the simplest cellular 

automata is a one-dimensional array of cells, each with value of 0 or 1 (box 

13.1). Perhaps the most famous cellular automaton is called the “Game of 

Life,” which was invented by John Conway, the John von Neumann profes-

sor of mathematics at Princeton, in 1968, popularized by Martin Gardner in 

his “Mathematical Games” column in Scientific American, and is illustrated 

in figure 13.2. The board is a two-dimensional array of cells that can only 

be “on” or “off” and the update rule only depends on the four nearest 

neighbors. On each time step, all the states are updated. Complex patterns 

are generated in the array, some of which have names, like “gliders,” which 

flit across the array and collide with other patterns. The initial conditions 

Figure 13.1

Stephen Wolfram at his home in Concord, Massachusetts, standing on an algorith-

mically generated floor. Wolfram was a pioneer in complexity theory and showed 

that even simple programs can give rise to the complexities of the kind we encounter 

in the world. Courtesy of Stephen Wolfram.
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Box 13.1

Cellular Automaton

Rule 110. A cellular automata rule specifies the color of a cell, depending 

on its color and the color of its immediate neighbors. For example, for the 

eight possible combinations of black and white for three cells shown at the 

top, rule 110 above specifies the next color under that box. The evolution 

of this rule applied one line at a time, starting from a single black cell, is 

shown below for fifteen time steps, and for 250 time steps below that. The 

simple initial condition evolves into a highly complex pattern that continues  

indefinitely. Where is the complexity coming from? For more details, see 

http://mathworld.wolfram.com/Rule110.html. 
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are critically important for finding a configuration that displays complex 

patterns.

How common are rules that generate complexity? Wolfram wanted to 

know the simplest cellular automata rule that could lead to complex behav-

iors and so he set out to search through all of them. Rules 0 to 29 produced 

patterns that would always revert to boring behaviors: all the cells would 

end up in a repeating pattern or some nested fractal pattern. But rule 30 

produced unfolding patterns and rule 110 dazzled with continually evolv-

ing complex patterns (box 13.1).8 It was eventually proved that rule 110 

was capable of universal computation; that is, some of the simplest of all 

possible cellular automata have the power of a Turing machine that can 

compute any computable function, so it is in principle as powerful as any 

computer.

One of the implications of this discovery is that the remarkable complex-

ity we find in living things could have evolved by sampling the simplest 

space of chemical interactions between molecules. That complex combina-

tions of molecules have emerged from evolution should be expected and 

not considered a miracle. But cellular automata may not be good models 

for early life, and which simple chemical systems are capable of creating 

complex molecules remains an open question.9 It might be that only spe-

cial biochemical systems have this property, which could help narrow the 

possible set of interactions from which life could have originated. 

An essential property of life is a cell’s ability to replicate itself, an abil-

ity explored by the Hungarian-born American mathematician John von 

Figure 13.2

Game of life. Snapshot of a Gosper’s Glider Gun (above) that emits a sequence of 

gliders that travel diagonally, from the “mother ship” (above) to bottom right. From 

Wikipedia: Gun (cellular automaton), which has an animated gif of the glider gun 

in action. 
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Neumann at the Institute for Advanced Study in Princeton in the 1940s 

using cellular automata. Von Neumann’s works had a major impact on 

many areas of mathematics, especially his seminal work on game theory 

(mentioned in chapter 1). Looking for the simplest cellular automaton 

that could replicate itself exactly, von Neumann found a complex cellular 

automaton with twenty-nine internal states and a large memory that self-

replicated.10 This was of considerable biological interest because cells that 

are able to self-replicate also have many internal states and memory in the 

form of DNA. Since then, much simpler cellular automata have been found 

that also can self-replicate.

Is the Brain a Computer?

In 1943, Warren McCulloch and Walter Pitts showed that it was possible 

to build a digital computer out of simple binary threshold units like the 

perceptron, which could be wired up to make the elementary logical gates 

in a computer.11 We now know that brains have mixed analog and digital 

properties and that their neural circuits generally do not compute logical 

functions. But McCulloch and Pitts’s 1943 paper received a lot of atten-

tion at the time and, in particular, inspired John von Neumann to think 

about computers. He built one of the first digital computers that had stored 

programs, an unusual project for a mathematician at that time, although 

when von Neumann died in 1957, the Institute for Advanced Study did not 

continue his line of research and scrapped his computer.12

Von Neumann also was interested in the brain. In his 1956 Silliman 

lectures at Yale,13 he pondered the question of how the brain could func-

tion reliably with such unreliable components. When a transistor in a digi-

tal computer makes a mistake, the whole computer can crash, but when a 

neuron in the brain misfires, the rest of the brain adapts to the misfire and 

carries on. Von Neumann thought that redundancy might be the reason for 

the robustness of brains since many neurons are involved in every opera-

tion. Redundancy is traditionally based on having a backup, in case the pri-

mary system fails. But we now know that redundancy in the brain is based 

on diversity rather than duplication. Von Neumann also was concerned 

about logical depth: how many logical steps can a brain make before accu-

mulated errors corrupt the results? Unlike a computer, which can perform 

each logical step perfectly, brains have many sources of noise. A brain may 

not achieve perfection, but because so many of its neurons are working 

together in parallel, it accomplishes much more with each step than a com-

puter can in a single step, and it needs less logical depth.
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The Space of Algorithms

Imagine the space of all possible algorithms. Every point in this space is 

an algorithm that does something, and some algorithms are amazingly 

useful and productive. In the past, such algorithms were handcrafted by 

mathematicians and computer scientists working like artisans in guilds. Ste-

phen Wolfram automated the finding of algorithms for cellular automata 

by exhaustive search, starting with the simplest automata, some of which 

produced highly complex patterns. This insight can be summarized by 

Wolfram’s law, which states that you don’t have to travel far in the space 

of algorithms to find one that solves an interesting class of problems. This 

is like sending bots to play games like StarCraft on the Internet to try all 

possible strategies. According to Wolfram’s law, there should be a gal-

axy of algorithms somewhere in the universe of algorithms that can win  

the game.

Wolfram focused on the space of cellular automata, a small subspace 

in the space of all possible algorithms. But what if cellular automata are 

atypical algorithms that exhibits more universality than other classes of 

algorithms? We now have confirmation of Wolfram’s law in the space of 

neural networks. Each deep learning network was found using a learning 

algorithm, which is a meta-algorithm that finds new algorithms. For a large 

network and a large set of data, learning from different starting states can 

generate a galaxy of networks roughly as good as one another at solving a 

problem. This raises the question of whether there might be a faster way to 

find the region of algorithm space than by gradient descent, which is slow 

and requires a lot of data. A hint that this might be possible is that each 

species of living organisms is a cloud of individuals created by variant DNA 

sequences around a point in the space of living algorithms, and nature has 

managed to jump from cloud to cloud by natural selection, in a saltatory 

process called “punctuated equilibria,”14 together with local search by ran-

dom mutations. Genetic algorithms were designed to make such jumps, 

based loosely on how nature evolves new organisms.15 We need a math-

ematics to describe these clouds of algorithms. Who knows what the uni-

verse of algorithms looks like? There are many more galaxies of algorithms 

that we have not yet discovered, but these can be found by automated 

discovery—the final frontier.

A simple example of this process was followed by Klaus Stiefel, a post-

doctoral fellow in my lab, who, in 2007, used an algorithm that grew model 

neurons with complex dendritic trees in a computer.16 Dendrites are like 

antennas that collect inputs from other neurons. The space of possible 



202 Chapter 13

dendritic trees is vast, and the goal was to specify the desired function and 

search the space of dendritic trees for a model neuron that could compute 

the function. One useful function is to decide on the order of arrival of 

input spikes: When a particular input arrives before another input, the neu-

ron should output a spike, but if it arrives later, the neuron should remain 

silent. Such a model neuron was discovered by searching through all pos-

sible dendritic trees using a genetic algorithm and the solution looked just 

like a cortical pyramidal neuron, with a synapse on a thin dendrite com-

ing out the bottom (a basal dendrite) and another synapse on the thick 

dendrite coming out from the top of the neuron (an apical dendrite; figure 

14.6). This is a possible explanation for why pyramidal cells have apical and 

basal dendrites, a function that might not have been imagined without the 

help of a deep search through the space of all possible dendrites. By repeat-

ing this search starting with other functions, a directory of functions listed 

by their dendritic shapes could be compiled automatically, and when a new 

neuron is discovered, its shape could be looked up in the directory to find 

its possible functions.

Stephen Wolfram left academia to run Wolfram Research, which cre-

ated Mathematica, a program that supports a wide range of mathemati-

cal structures and is widely used for practical applications. Mathematica is 

written in the Wolfram language, a general multiparadigm programming 

language that also powers Wolfram Alpha, the first working question-and-

answer system for facts about the world based on a symbolic approach.17 In 

academia, the coin of the realm is the published paper, but, when you are 

a self-supporting gentleman scientist, you can afford to bypass bite-sized 

papers and publish books that allow enough room to thoroughly explore a 

new area. This was the norm for many centuries when only the wealthy or 

those with wealthy patrons could afford to be scientists.

Wolfram wrote A New Kind of Science in 2002.18 Weighing in at 5.6 pounds, 

it was 1,280 pages long, of which 348 pages were notes that contained the 

equivalent of a hundred new scientific papers. The book appeared with 

great fanfare in the press but elicited a mixed response from the complex 

systems community, some of whom thought it failed to fully acknowledge 

their own work. This objection missed the point of the book, which was to 

put previous work into a new context. Carolus Linnaeus had developed a 

modern taxonomy for classifying plants and animals (“binomial nomen-

clature,” e.g., E. coli), which was an important precursor to Charles Dar-

win’s theory of evolution and provided a context for previous taxonomies. 

The trail that Wolfram blazed is now being followed by a new generation of  

researchers.
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In the 1980s, Wolfram was skeptical that much would come from neural 

networks in the real world, and, indeed, they did not have much impact for 

the next thirty years. Progress in last five years, however, has changed that: 

Wolfram and many other researchers have admitted they underestimated 

what the networks could accomplish.19 But who could have predicted how 

well neural networks would scale in their performance? The Wolfram lan-

guage that supports Mathematica now also supports deep learning applica-

tions, one of which was the first to provide online object recognition in 

images.20

Stephen introduced me to Beatrice Golomb, who was working on her 

doctorate at UCSD when I visited San Diego in 1987. He called me to say 

that his friend Beatrice would be at my PDP talk (and then called us each 

afterward to ask how it went). Several years later, I would move to San 

Diego, and Beatrice and I would become engaged. After our marriage at 

the Caltech Athenaeum in 1990, we went to the Beckman Auditorium for 

a marriage symposium, where Beatrice gave a talk (“Marriage: Theory and 

Practice.”) in her wedding gown. Stephen spoke with conviction and pride 

about how he had introduced us, but when Beatrice pointed out that if he 

was going to take credit, he also had to take responsibility, he cautiously 

demurred.





We are seeing the birth of a new architecture for the computer chip industry. 

The race is on to design and build a new generation of chips to run learn-

ing algorithms, whether deep, reinforcement, or other, thousands of times 

faster and more efficiently than the way they are now simulated on general-

purpose computers. The new very large-scale integration (VLSI) chips have 

parallel processing architectures, with memory onboard to alleviate the 

bottleneck between memory and the central processing unit (CPU) in the 

sequential von Neumann architectures that have dominated computing for 

the last fifty years. We are still in an exploratory phase with regard to hard-

ware, and each type of special-purpose VLSI chip has different strengths 

and limitations. Massive amounts of computer power will be needed to run 

the large-scale networks that are being developed for AI applications, and 

there is tremendous potential for profit in building efficient hardware.

Major computer chip companies and startups alike are making sub-

stantial investments in developing chips for deep learning. In 2016, for 

example, Intel purchased Nervana, a small start-up company in San Diego 

that has designed special-purpose VLSI chips for deep learning, for $400 

million; former Nervana CEO Naveen Rao is now heading Intel’s new AI 

Products Group, which reports directly to the CEO of Intel. In 2017, Intel 

purchased Mobileye, a company that specializes in sensors and computer 

vision for self-driving cars, for $15.3 billion dollars. Nvidia, which devel-

oped special-purpose digital chips optimized for graphics applications and 

gaming, called “graphics processing units” (GPUs), is now selling more 

special-purpose chips for deep learning and cloud computing. And Google 

has designed a far more efficient special-purpose chip, the tensor processing 

unit (TPU), to power deep learning for its Internet services.

But specialized software is equally important for developing deep learn-

ing applications. Google has made its TensorFlow program for running deep 

learning networks openly available, though this may not be as altruistic as 

14 Hello, Mr. Chips
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it seems. Making Android freely available, for example, gave Google control 

of the operating system now used on most smartphones around the world. 

But now there are openly available alternatives to TensorFlow: CNTK from 

Microsoft, MVNet, backed by Amazon and other major Internet compa-

nies, and other viable deep learning programs, such as Caffe, Theano, and 

PyTorch.

Hot Chips

In 2011, I organized “Growing High Performance Computing in a Green 

Environment,” a symposium sponsored by the Kavli Foundation and held 

in Tromsø, Norway.1 We estimated that, with current microprocessor tech-

nology, exascale computing (a thousand times more powerful than petas-

cale computing) would require 50 megawatts—more power than needed 

to run the New York City subways. The next generation of supercomputers 

may therefore have to run on low-power chips like the ones developed and 

optimized for cell phones by the UK-based multinational semiconductor 

company Arm Holdings (ARM). Soon it will no longer be practical to use 

general-purpose digital computers for the most compute-intensive applica-

tions, and special-purpose chips will dominate, as they already have in cell 

phones.

There are around 100 billion neurons in a human brain, each con-

nected to around several thousand others, adding up to a thousand trillion 

(1015) synaptic connections. The power needed to run the brain is around 

20 watts, or 20 percent of the power needed to run the entire body, even 

though the brain accounts for only 3 percent of the body’s mass. In con-

trast, a petascale supercomputer, which is not nearly as powerful as the 

brain, consumes 5 megawatts, or 250,000 times as much power. Nature 

accomplished this marvel of efficiency by miniaturizing the components of 

neurons needed for signaling and communicating down to the molecular 

level and by interconnecting the neurons in three dimensions (transistors 

on the surface of microchips are interconnected in only two), making it 

possible to minimize the volume needed. And because nature evolved these 

technologies long ago, we have plenty of catching up to do.

Deep learning is highly compute intensive and is now done on cen-

tralized servers, with the results delivered to edge devices like cell phones. 

Ultimately, the edge devices should be autonomous, which will require 

radically different hardware—hardware that is much lighter and much less 

power hungry than cloud computing is. But, fortunately, such hardware 

already exists—neuromorphic chips, whose design was inspired by the 

brain.
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Cool Chips

I first met Carver Mead (figure 14.1) at a workshop held at a resort outside 

Pittsburgh in 1983. Geoffrey Hinton had assembled a small group to explore 

where neural networks were heading. Mead was famous for his major con-

tributions in computer science. He was the first to realize that, as the tran-

sistors on very large-scale integration chips became smaller and smaller, the 

chips would become more and more efficient, and therefore computational 

power should continue to increase for a long time. He coined the term 

“Moore’s law,” based on Gordon Moore’s observation that the number of 

transistors on chips was doubling every eighteen months. He was already 

legendary for inventing, in 1981. the silicon compiler, a program that auto-

matically laid out the pattern of wires and system-level functional modules 

on a chip.2 Before the silicon compiler, each chip was handcrafted by engi-

neers based on experience and intuition. In essence, Mead’s solution was 

to program computers to design their own chips. These were our first steps 

toward nanoscale engineering.

Mead is a visionary. Even as we were huddling around a table in a small 

room at the workshop outside Pittsburgh, a supercomputer convention was 

Figure 14.1

Carver Mead in 1976, around the time he created the first silicon compiler at Caltech. 

Carver was a visionary whose insights and technological advances have had a major 

impact on both digital and analog computing. The phone dates the photo. Caltech 

archives. Courtesy of Caltech.
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taking place upstairs. Major supercomputer companies like Cray Inc. and 

Control Data Corporation were designing special-purpose hardware with 

$100 million price tags that was hundreds of times faster than the com-

puters in our labs. Cray supercomputers were so fast they had to be liquid 

cooled with Freon. Mead told me that supercomputer companies didn’t 

know it yet, but microprocessors would eat their lunch and they would 

soon be extinct. Although much slower than the special-purpose chips 

in supercomputers, the microprocessors in personal computers evolved 

faster than the supercomputers because of the ever greater cost reductions 

and performance improvements brought about by scaling down the basic 

device dimensions. The microprocessor in a cell phone now has ten times 

the computational power of a Cray XMP supercomputer from the 1980s, 

and high-performance supercomputers with hundreds of thousands of 

microprocessor cores have now reached petascale, a million times faster 

than the extinct Cray supercomputers, for about the same cost, adjusted 

for inflation.

At that 1983 workshop, Mead showed us a silicon retina, which was built 

with the same technology as VLSI chips but used analog rather digital cir-

cuits. In an analog circuit, the voltages on the transistors can vary continu-

ously, whereas the transistors in a digital circuit take only one of two binary 

values, “on” or “off.” The human retina has an array of one hundred million 

photoreceptors, but, unlike a camera that just transmits the photon buckets 

to memory, the retina has several layers of neural processing that transform 

the visual input into efficient neural codes. All of the retina’s processing is 

analog until its encoded signals reach the ganglion cells, which carry these 

signals to the brain in the form of all-or-none spikes along a million axons. 

The all-or-none character of spikes is like digital logic, but the timing of 

the spikes is an analog variable, and there is no clock, making spike trains 

a hybrid code.

In Mead’s retina chip, the graded part of the processing was accom-

plished by using voltages below the knee of the threshold from “off” to the 

near “off” state. In contrast, running in digital mode, a transistor rapidly 

jumps to the fully “on” state, which takes much more power. As a conse-

quence, an analog VLSI chip consumes only a tiny fraction of the power of 

a digital chip, ranging from nanowatts to microwatts rather than from mil-

liwatts to watts, and making it millions of times more energy efficient. The 

founder of neuromorphic engineering, whose goal is to build chips based 

on brain-style algorithms, in 1989, Mead showed that neural algorithms 

embedded in the neural circuits of insect and mammal eyes could be effi-

ciently replicated in silicon.3
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The retina chip was a 1988 tour de force invention by Mead’s star grad-

uate student, Misha Mahowald (figure 14.2).4 Her insights combined her 

experience as an undergraduate biology major at Caltech with her gradu-

ate work in electrical engineering, which led to four patents. In 1992, she 

received the Milton and Francis Clauser Prize for her doctoral disserta-

tion on a microchip that did real-time binocular matching, the first chip 

to use real collective behavior for a demanding task. And, in 1996, she 

was inducted into the Women in Technology International (WITI) Hall  

of Fame.

There is a close correspondence between the physics of transistors near 

threshold and the biophysics of ion channels in biological membranes. 

Mahowald worked with neuroscientists Kevan Martin and Rodney Douglas 

at the University of Oxford to develop silicon neurons5 and moved with 

them to Zurich to help found the Institute of Neuroinformatics at the Uni-

versity of Zurich and the Swiss Federal Institute of Technology in Zurich 

(figure 14.3). After suffering from depression, however, Misha took her life 

in 1996 at the age of 33, a brilliant falling star.

Figure 14.2

Misha Mahowald at Caltech in 1982, at the time she created the first silicon retina 

as a student of Carver Mead. Her contributions to neuromorphic engineering were 

seminal. Courtesy of Tobias Delbrück. 
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Carver Mead retired from Caltech in 1999 and moved to Seattle, where I 

visited him in 2010. From his backyard, you can see jets over the water vec-

toring in on the final approach to Sea-Tac Airport. His father was an engi-

neer who worked in a power plant at the Big Creek Hydroelectric Project, an 

extensive hydroelectric power scheme on the upper San Joaquin River sys-

tem in the Sierra Nevada of Central California. The technological leap from 

early hydroelectrics to microelectronics in a generation is breathtaking. 

Carver’s hobby is collecting antique glass and ceramic insulators used to 

suspend power lines. These can be found scattered like Indian arrowheads 

if you know where to look. Carver is a visionary (he has a laser gyroscope 

he used to test a new approach to quantum physics),6 but what made him 

so effective was his commitment to building things that not only work but 

that you can hold in your hand.

Figure 14.3

Silicon neuron. This analog VLSI chip has circuits that behave like ion channels 

in neurons and are able to emulate neural circuits in real time, shown as a cartoon 

drawn by Misha Mahowald over the chip. Courtesy of Rodney Douglas. 
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Neuromorphic Engineering

In 1990, as a Fairchild distinguished scholar on sabbatical at Caltech, I 

enjoyed sitting in on lab meetings, especially those of Christof Koch, a 

computational neuroscientist with shared interests, and his colleagues, and 

of Carverland—Carver Mead’s research group—one of whose amazing proj-

ects was a silicon cochlea, which had frequency-tuned circuits similar to 

those of the cochleas in our ears. Other researchers were working on silicon 

synapses, including silicon mechanisms for synaptic plasticity, so that long-

term changes in weights could be implemented on silicon chips. Students 

from Carverland have since gone forth and populated engineering depart-

ments around the world.

In 1993, Christof Koch, Rodney Douglas, and I founded the Workshop 

on Neuromorphic Engineering, sponsored by the NSF, which continues to 

meet every July for three weeks in Telluride, Colorado. The workshop is 

international, with students and instructors coming from many different 

backgrounds and countries. Unlike most workshops, which are more talk 

than work, the Telluride workshop has rooms filled with students work-

ing on microchips and using them to build robots. There was a problem, 

though, with connecting a retina chip to a visual cortex chip, and cor-

tex chips to motor output chips—too many wires were needed to connect 

them.

A far better alternative to connecting up analog VLSI chips is to use 

spikes, which is what our brains do through the long-distance axons of 

the white matter that makes up half of the cerebral cortex. But it would 

not be feasible to connect up a retina chip and a cortex chip with a million 

wires. Fortunately, fast digital logic can be used to multiplex each wire, 

allowing many retinal cells to communicate with many cortical cells on the 

same wire. This is done by transmitting to the receiving chip the address 

from each originating spike in the sending chip, which is then decoded 

and routed to the units it connects to in what is called “address event  

representation.”

Now at the University of Zurich’s Institute of Neuroinformatics, Tobias 

Delbrück (figure 14.4, top) was one of Carver Mead’s graduate students.7 

In 2008, he developed a highly successful spiking retina chip called the 

“Dynamic Vision Sensor” (DVS) that greatly simplified tasks such as track-

ing moving objects and locating objects in depth with two cameras (fig-

ure 14.4, bottom).8 Conventional digital cameras are frame based, storing 

a sequence of 26-millisecond snapshots. Information is lost within each 

frame: Imagine a spinning disc with a spot on it rotating at 200 revolutions 



Figure 14.4

Dynamic Vision Sensor (DVS). (Top) Tobias Delbrück holding a DVS camera that 

he invented at the Institute for Neuroinformatics at the University of Zurich. The 

camera is a special-purpose chip that emits spikes asynchronously rather than frames 

like a digital camera. (Bottom) the camera has a lens that focuses images on an ana-

log VLSI chip that detects incremental increases and decreases in light intensity at 

each pixel. Spikes are emitted along an “on” wire for positive increments and along 

an “off” wire for negative increments. The output spikes are processed by the circuit 

board, which displays the spike patterns seen in box 14.1. Your retina is a highly ad-

vanced DVS camera. The pattern of spikes from a retina is transformed in the brain 

but remains a pattern of spikes—there is no image anywhere in your brain even 

though you perceive the world that way. Top: Courtesy of Tobias Delbrück. Bottom: 

Courtesy of Samsung.
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per second; the spot will rotate five times in each frame, and the playback 

of a digital camera will look like a static ring (box 14.1). Tobias’s spiking 

camera, in contrast, can track the moving spot with microsecond precision 

with very few spikes, which makes it both fast and efficient. The first of 

a new class of sensors based on spikes and spike timing, the DVS camera 

has great potential for improving the performance of many applications, 

including self-driving cars. One of the projects at the 2013 Telluride work-

shop was to use it to defend a goal from incoming shots (figure 14.5).

Spiking neurons open up new computational opportunities. For exam-

ple, the timing of the spikes in a population of neurons can be used to regu-

late what kind of information is stored. In 1997, Henry Markram and Bert 

Sakmann in Germany reported that they could both increase and decrease 

synaptic strengths by repeated pairing of an input spike to a synapse with 

an output spike in the postsynaptic neuron.9 If the input occurred within a 

20-millisecond window before the output spike, there was long-term poten-

tiation, but if the repeated pairing of the input spike occurred within a 

20-millisecond window after the output spike, there was long-term depres-

sion (figure 14.6). “Spike-timing-dependent plasticity” (STDP), which has 

been reported in many parts of the brain of many species, is probably 

important for forming long-term memories of sequences of events—but, 

perhaps just as important, it offers a better interpretation of Hebb’s postu-

late (discussed in chapter 7).10

The general view of Hebbian plasticity was that the strength of a syn-

apse should increase when there was a simultaneous spike on the input 

and output of a neuron, a form of coincidence detection. But what Hebb 

actually said was “When an axon of cell A is near enough to excite a cell B 

and repeatedly or persistently takes part in firing it, some growth process or 

metabolic change takes place in one or both cells such that A’s efficiency, 

as one of the cells firing B, is increased.”11 For cell A to contribute to fir-

ing cell B, cell A has to fire a spike before the spike in cell B. As described 

by Hebb, this condition suggests causation, not just correlation. Although 

Hebb was silent on the conditions for decreasing the strength of a synapse, 

when an input spike occurs after the output spike, it is less likely to be caus-

ally connected to the output neuron, and disconnecting the synapse would 

make sense if increases and decreases in strength have to be balanced in the  

long run.

There is a running debate at the Telluride Neuromorphic Workshop 

between the analog VLSI advocates and the digital designers. Analog VLSI 

chips have many advantages, such as consuming very little power with 

all circuits working in parallel, but they also have shortcomings, such as 
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Box 14.1

How a Dynamic Vision Sensor Camera Works

In the frames from a DVS camera shown in the figure above, the white spots 

are spikes from the “on” channels and the black spots are spikes from the “off” 

channels. Gray indicates no spikes. In the upper left frame, two faces can be 

detected because they moved slightly during the 26-millisecond frame. In the 

upper right (juggling) frame, the spots have their arrival time indicated by 

gray level so you can see the trajectory. The spinning disk in the bottom left 

panel is rotating at 200 revolutions per second (rps). In the bottom middle 

panel, the trajectory is a spiral moving upward. In a brief 300-microsecond 

slice of the spiral shown in the bottom right panel, there are only 80 spikes 

and it is easy to calculate the speed by measuring the displacement of the 

black and white spikes divided by the time interval. Note that a digital camera 

with a 26-millisecond frame duration will not be able to follow the spot rotat-

ing at 200 Hertz because the rotation period is 5 milliseconds, and every frame 

will be an annulus. The only output from the camera is a stream of spikes, just 

like a retina. This is an efficient way to represent the scene since most pixels 

are silent most of the time, and each spike carries useful information. From 

P. Lichtsteiner, C. Posch, and T. Delbrück, “A 128×128 120 dB 15 μs Latency 

Asynchronous Temporal Contrast Vision Sensor,” IEEE Journal of Solid-State 

Circuits 43, no. 2 (2008): figure 11. Courtesy of Tobias Delbrück.
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Figure 14.5

Neuromorphic goalkeeper at the 2013 Workshop on Neuromorphic Engineering in 

Telluride. (Top) Fopefolu Folowosele (left) tests the neuromorphic goalkeeper (right). 

Other students and their projects can be seen in the background. (Bottom) Delbrück’s 

DVS camera directs a paddle at the end of a paint mixing stick. The goalkeeper is 

much faster than the students and saves every shot on goal. I also tried and failed to 

make a goal. Courtesy of Tobias Delbrück.
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Figure 14.6

Spike-timing-dependent plasticity (STDP). (Left) Drawing of pyramidal neurons 

from the cortex by the great Spanish neuroanatomist Santiago Ramón y Cajal. The 

output axon from neuron A makes synaptic contacts onto the dendrite of neuron 

C (arrows). (Right) Two neurons like those on the left were impaled with an elec-

trode and stimulated to produce spikes with a time delay between the spikes in the 

two neurons. When an input spike to a neuron is repeatedly paired with an output 

spike, the change in the strength of a synapse (vertical axis) can either increase if 

the presynaptic input arrives before the postsynaptic spike within a window of 20 

milliseconds (horizontal axis), or decrease in strength in the opposite order. From 

Left: Ramón y Cajal, S. Estudios Sobre la Degeneración y Regeneración del Sistema Nervi-

oso (Moya, Madrid, 1913–1914), figure 281. Right: G. Q. Bi and M. M. Poo, “Synap-

tic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, 

Synaptic Strength, and Postsynaptic Cell Type,” Journal of Neuroscience 18 (1998): 

10464–10472, figure 7. Courtesy of Mu-ming Poo.
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transistor variability, which results in identically drawn transistors pro-

ducing currents that can differ by ±50 percent. Digital VLSI, in compari-

son, though more accurate, faster, and easier to design, requires a lot more 

power. Dharmendra Modha’s team at IBM Research in Almaden, California, 

developed a digital chip with 4,096 processing cores and 5.4 billion transis-

tors called “True North.”12 Though the chip can be configured to simulate 

a million spiking neurons connected by 268 million synapses, it consumes 

only 70 milliwatts. But the strengths of these synapses are fixed, and this 

inflexibility limits the implementation of many important features, such as 

weakening or strengthening. 

Another shortcoming of networks with spiking neurons is that gradient 

descent, which has propelled learning in networks of continuously valued 

neurons, is not possible because of the discontinuities at the spike times. 

This limits the complexity of what a spiking network can be taught. Gra-

dient descent has been hugely successful in training deep networks with 

model neurons that have continuously varying output rates, so that the 

output function is differentiable, an essential feature for the backprop 

learning algorithm. Although nondifferentiable spiking networks have dis-

continuities when a spike occurs, this drawback was recently overcome by 

Ben Huh, a postdoctoral fellow in my lab, who found a way to make recur-

rent network models of spiking neurons perform complex tasks over long 

temporal sequences using gradient descent.13 This opens the door to train-

ing deep spiking networks.

No More Moore’s Law?

As predicted by Moore’s law, computer power has increased more than 

a trillionfold since digital computers were invented in the 1950s. Never 

before has any technology been able to grow exponentially through so 

many orders of magnitude, which has resulted in the embedding of com-

puters into almost every manufactured device, from toys to automobiles. 

Computers can automatically adjust the adaptive optics of modern tele-

scopes to maximize their resolution; they can analyze the photons captured 

by modern microscopes to localize molecules with super-resolution. Every 

area of science and technology is now dependent on VLSI chips.

Carver Mead predicted the rise of these chips based on the potential 

for shrinking the line width on them, but the width has now reached a 

physical limit: there are too few electrons in the wires, and they tend to leak 

out or be blocked by random charges, making even digital circuits unreli-

able.14 Is Moore’s law no more? A radically different architecture is needed 
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to continue increasing processing power, one that does not depend on the 

perfect accuracy of digital designs. Just as hybrid automobiles married the 

efficiency of electric motors with the range of gasoline engines, a hybrid 

digital and neuromorphic design is emerging that takes advantage of the 

low power needs of neuromorphic chips for computing and the high band-

width of digital chips for communicating.

Moore’s law is based only on the processing power of chips. As paral-

lel architectures continue to evolve over the next fifty years, Moore’s law 

should be replaced with a law that takes into account energy as well as 

throughput. At the 2018 NICE Conference hosted by Intel in Portland, Ore-

gon, researchers from the United States and Europe presented three new 

neuromorphic chips, the Loihi research chip from Intel, and two second 

generation chips supported by the European Human Brain Project. With the 

development of massively parallel architectures, new algorithms are being 

created to run on these architectures. But the chips within these architec-

tures need to communicate information, which is the focus of chapter 15.



It never occurred to me that I would someday become omniscient, which 

for all practical purposes I and indeed anyone else with access to the Inter-

net now is. Information flows through the Internet at the speed of light. 

It is easier to get a fact from the Internet than from a book on my shelf. 

We are living through an explosion of information in its many forms. Sci-

entific instruments, from telescopes to microscopes, are collecting larger 

and larger data sets that are being analyzed with machine learning. The 

National Security Agency uses machine learning to sift through all of the 

data it has been collecting everywhere. The economy is going digital, and 

programming skills are in great demand at many companies. As the world 

shifts from an industrial to an information economy, education and job 

training will have to adapt. This already is having a profound impact on 

the world.

Information Theory

In 1948, Claude Shannon (figure 15.1) at the AT&T Bell Laboratories in 

Murray Hill, New Jersey, proposed a remarkably simple but subtle theory for 

information to understand signal transmission through noisy phone lines.1 

Shannon’s theory drove the digital communications revolution that gave 

rise to cell phones, digital television, and the Internet. When you make a 

cell phone call, your voice is encoded into bits and transmitted over radio 

waves and digital transmission lines to a receiver, where the digital signals 

are decoded and converted to sounds. Information theory puts bounds on 

the capacity of the communications channel (figure 15.2), and codes have 

been devised that approach the Shannon limit.

Despite the many forms of information in the world, there is a way to 

measure precisely how much of it is in a data set. The unit of information 

is a “binary bit,” which can take on a value of 1 or 0. A “byte” is eight bits. 

15 Inside Information
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The information content of a high-quality photo is measured in megabytes, 

or millions of bytes. The amount of information stored in your cell phone 

is measured in gigabytes, or billions of bytes. Data on the Internet are mea-

sured in petabytes, or quadrillions (millions of billions) of bytes.

Number Theory

At its annual international symposium, the IEEE Information Theory  

Society (ITS) confers the Claude E. Shannon Award, a high honor, in rec-

ognition of distinguished research in the field. At the society’s 1985 sym-

posium in Brighton, England, the Shannon Award was given to Solomon 

Figure 15.1

Claude Shannon around 1963 in front of a telephone switching network. He worked 

at AT&T Bell Laboratories when he invented information theory. From Alfred Eisen-

staedt/The LIFE Picture Collection/Getty Images.
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Golomb (figure 15.3) of the University of Southern California, whose 

work on shift register sequences was fundamental to modern digital com-

munication.2 A shift register sequence is an algorithm that generates long 

pseudorandom sequences of 0s and 1s. Every time you make a call on 

your cell phone you are using a shift register sequence. Golomb showed 

how to use a shift register sequence to efficiently encode signals, which 

could then be transmitted and decoded at the receiver. If you were to 

add up all the times that cell phones and other communications systems 

have generated a shift register sequence, the number would be stagger-

ing: more than an octillion times, which is 1027, a billion billion billion  

(1,000,000,000,000,000,000,000,000,000).3

I once asked Solomon Golomb (who was my father-in-law) how he hit 

upon such an elegant solution to the communication problem. He said that 

it came from his training in number theory, one of the most abstract parts 

of mathematics. He had been introduced to shift register sequences when 

he was a summer intern at the Glenn L. Martin Company in Baltimore. In 

1956, after receiving a doctorate from Harvard in number theory, a highly  

Figure 15.2

Shannon’s model of a communication system. The message is coded into binary bits 

and transmitted down a channel, which could be a phone line or radio wave, where 

it is received and decoded. The channel capacity in bits per second depends on the 

amount of noise in the system. From https://dennisdjones.wordpress.com. Courtesy 

of Dennis Jones.
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abstract area of mathematics, he took a job at Caltech’s Jet Propulsion Labo-

ratory (JPL), where he was head of the communications group and worked 

on space communications. Deep space probes were being sent out to the 

far reaches of the solar system, but the signals coming back were weak and 

noisy. Shift register sequences and error-correcting codes greatly improved 

communication with space probes, and the same mathematics laid the 

foundation for modern digital communications.

Golomb hired Andrew Viterbi at JPL, another distinguished information 

theorist, and introduced him to Irwin Jacobs, whom he had invited to visit 

JPL on a sabbatical from MIT. Decades later, in 1985, Viterbi and Jacobs 

would cofound Qualcomm, which revolutionized the technology in cell 

phones by using shift register sequences that spread the information across 

a broad frequency band rather than using a single frequency as a more 

Figure 15.3

Solomon Golomb in 2013 upon receiving the National Medal of Science. His math-

ematical analysis of shift register sequences made it possible to communicate with 

deep space probes when he was at the Jet Propulsion Laboratory at Caltech in Pasade-

na; the shift register sequences later became embedded in cell phone communication 

systems. Every time you use your cell phone you are using his mathematical codes. 

Courtesy of the University of Southern California.
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efficient way to communicate. A simpler version of this idea goes back 

to Hedy Lamarr (figure 15.4), a movie actress and inventor who, in 1941, 

shared the patent on frequency hopping, which she developed as a secure 

communication system for the military during World War II.4 When Sol 

Golomb left JPL to join the faculty at the University of Southern California, 

Ed Posner took over his group, the same Ed Posner who founded NIPS, but 

Golomb continued to support his former JPL group with advice.

The mathematics behind shift register sequences is a deep part of num-

ber theory. When Golomb received his doctorate from Harvard, his doc-

toral advisor, and most mathematicians at that time, were proud to believe 

that pure mathematics would never have any practical applications. This 

view was shared by G. H. Hardy, a Cambridge don whose influential book 

A Mathematician’s Apology5 declared that “good” mathematics had to be 

pure and that applied mathematics was “uninteresting.” But mathemat-

ics is what it is, neither pure nor applied. Some mathematicians may want 

their mathematics to be pure, but they can’t stop it from solving practical 

problems in the real world. Indeed, Golomb’s career was largely defined by 

Figure 15.4

Hedy Lamarr in a 1940 MGM publicity photo. Star of stage and screen during the 

Second World War, she coinvented frequency hopping, which is related to spread 

spectrum communication used by the military and in many cell phones.
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finding important practical problems he could solve using the right tools 

from “pure mathematics.”

Golomb also invented mathematical games. His book Polyominoes6 intro-

duced the world to games that involved shapes composed of many squares, 

generalizing dominoes, which have only two. Martin Gardner popularized 

Polyominos in his “Mathematical Games” column in Scientific American. 

Tetrominoes, shapes made from four squares, were the inspiration for Tetris, 

an addictive game in which Tetrominoes rain from above and have to be 

guided into slots below. Polyominos remains a popular board game and has 

led to a wide range of interesting combinatorial problems in a subfield of 

mathematics.

Golomb was also a biblical scholar and could speak dozens of languages, 

including Japanese and Mandarin Chinese. Beatrice once brought him a 

first edition of Gödel, Escher, Bach: An Eternal Golden Braid by Douglas R. 

Hofstadter. Sol opened to the frontispiece, which the caption said was the 

first twenty lines of the Book of Genesis in ancient Hebrew. “First of all, it’s 

upside down,” he said and then turned it around. “Second, this is in ancient 

Samaritan, not ancient Hebrew. Third of all, this isn’t the first twenty lines 

of Genesis, but only the first seven words of each of the first twenty lines of 

Genesis.” He proceeded to read and then translate the text.

Claude Shannon attended the 1985 IST symposium in Brighton, where 

Golomb gave the Shannon Lecture, the only Shannon Lecture Shannon 

attended other than his own in 1972. 

Predictive Coding

In a communication system, change has high information value, whether 

the change is across space or over time. An image with uniform intensity 

carries little information, and neither does a signal that is not changing. 

Sensors that send signals to the brain mainly detect change, and we have 

already seen examples in the retina in chapter 5 and Tobias Delbrück’s DVS 

camera in chapter 14. Once stabilized on the retina, images fade away after 

a few seconds.7 Though we are unaware of it, our eyes make tiny jumps 

called “microsaccades” several times a second, each jump refreshing our 

internal model of the world. When something moves in the world, reti-

nas duly report that upstream, and their reports update the brain’s world 

model, an operation diagrammed in figure 15.5. The brain’s model is a hier-

archical one, and comparison between the incoming sensory information 

and the expectations of the model take place at multiple levels.8 A bright 

flash or loud noise gets your immediate attention by bottom-up saliency. 
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But you notice that something on your desk has changed at a much higher 

level, by making top-down comparisons from memory. That all of this is 

happening in real time in the brain leads us to the Carver Mead mantra that 

“time is its own representation.”9

Predictive coding goes back to Hermann von Helmholtz, who explained 

vision as unconscious inference, or top-down generation of visual informa-

tion to cancel noise, fill in incomplete information, and interpret the visual 

scene.10 For example, the size of a known person’s image on one of our 

retinas is a monocular cue for depth since we are familiar with that person’s 

actual size and have experience with how retinal size varies with distance. 

At a higher cognitive level, James McClelland and David Rumelhart found 

that when letters were situated in the context of a word, subjects were able 

to identify them faster than when they were in a nonword without seman-

tic context.11 Their parallel processing model exhibited similar behavior, 

Figure 15.5

A hierarchical predictive coding framework. Perception depends on prior expecta-

tions based on regularities extracted from earlier sensory events. In this framework, 

predictions about current sensory signals made by higher levels of the cortex arise 

from the interaction between the E and R populations and are fed back to the earlier 

level. Only the prediction errors are propagated forward. This is an implementation 

of Helmholtz’s unconscious inference. From Gábor Stefanics, Jan Kremláček, and 

István Czigler, “Visual Mismatch Negativity: A Predictive Coding View,” Frontiers in 

Human Neuroscience 8 (2014): 666, figure 1. doi:10.3389/fnhum.2014.00666.
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which gave the two researchers confidence they were on the right track to 

understanding how information is represented in our brains.

The Global Brain

Launched by the White House on April 2, 2013 (figure 15.6), the U.S. 

BRAIN Initiative is creating new neurotechnologies to accelerate the rate 

at which we can improve our understanding of function and dysfunction 

in the ultimate information machine—the brain. Just as the NIPS confer-

ences brought together researchers from many disciplines to create learning 

machines, the BRAIN Initiative is drawing engineers, mathematicians, and 

Figure 15.6

Representatives from the agencies and institutions involved, shortly before the an-

nouncement of the BRAIN Initiative at the White House on April 2, 2013. (Right to 

left) Miyoung Chun, chief science officer at the Kavli Foundation, who spearheaded 

the white paper for the BRIAN Initiative; William Newsome, the cochair of the NIH 

Advisory Committee on the BRAIN Initiative; Francis Collins, NIH director; Gerald 

Rubin, director of the Janelia Research Campus of the Howard Hughes Medical Insti-

tute; Cora Marrett, NSF director, President Barack Obama, Amy Gutmann, chair of 

the presidential Bioethics Committee; Robert Conn, president of the Kavli Founda-

tion, Arati Prabhakar, DARPA director; Alan Jones, director of the Allen Institute for 

Brain Science; Terry Sejnowski, Salk Institute. Courtesy of Thomas Kalil.
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physicists into neuroscience to improve tools to probe the brain. As we 

learn more about the brain, and especially about the mechanisms underly-

ing learning and memory, we will have a much better understanding of the 

principles of brain function.

Although much about the brain is known at the molecular and cellular 

levels, we have not yet achieved a comparable understanding of how the 

brain is organized at higher levels. We know that different types of informa-

tion are stored in widely distributed parts of the cortex, but we don’t know 

how all the disparate pieces of information can be retrieved so quickly to 

solve a complex problem like recognizing the name of a person from the 

image of that person’s face, which is stored in different parts of the cortex. 

This question is closely tied to the origin of consciousness in brains.

My lab recently discovered global patterns of activity in sleeping human 

brains that may give us insight into how pieces of information distrib-

uted broadly in the cerebral cortex are linked together. In a stage of sleep 

intermediate between restorative slow-wave sleep and rapid eye movement 

(REM) dream sleep, highly synchronized spatiotemporal oscillations called 

“sleep spindles” dominate cortical activity. These 10–14-Hertz oscillations 

last for a few seconds and recur thousands of times during the night. 

There is experimental evidence that sleep spindles participate in memory 

consolidation while we are sleeping. In recordings from the human cor-

tex, Lyle Muller, Sydney Cash, Giovanni Piantoni, Dominik Koller, Eric 

Halgren, and I discovered that sleep spindles are global, circular traveling 

waves of electrical activity that sweep through all sectors of the cortex 

(figure 15.7).12 We call them “Princess Leia waves” because they look like 

her hairstyle (figure 15.8). We speculated that sleep spindles may be a way 

for the cortex to integrate new information acquired during the day with 

previous memories, distributed widely in the cortex, by strengthening the 

long-distance connections between them. This is one of many research 

projects at the level of systems neuroscience spurred on by the BRAIN  

Initiative.

Operating Systems

The architecture of digital computers is different from that of neural net-

works. In digital computers, the memory and the central processing unit 

(CPU) are spatially separated, and data in memory must be moved to the 

CPU sequentially. In neural networks, the processing takes place in the 

memory in parallel, which eliminates the digital bottleneck between mem-

ory and processing, and which allows massively parallel processing since all 



Figure 15.7

Rotating electrical traveling waves in human cerebral cortex. Recordings from an 8×8 

grid of electrodes on the cortical surface during sleep spindles, which are involved 

in memory consolidation. (Left) Spindles are circular waves that travel across the 

side view of the cortex in the direction shown by the arrow, making a loop every 

80 milliseconds. This is repeated thousands of times during the night. (Right) The 

small arrows show the direction of maximum increase in the phase of the traveling 

wave at the sixty-four recording sites on the surface of the cortex. From: L. Muller, 

G. Piantoni, D. Koller, S. S. Cash, E. Halgren, and T. J. Sejnowski, “Rotating Waves 

during Human Sleep Spindles Organize Global Patterns of Activity during the Night” 

supplement 7, subject 3, TPF. Left: figure 2B, right: figure 1.

Figure 15.8

Carrie Fisher playing Princess Leia consolidating a memory in the epic 1977 science 

fiction/fantasy film Star Wars. Her hair buns resemble the circular flow fields that 

course across the cortex during sleep spindles. (Compare with figure 15.7.) Photo 

courtesy of Sunset Boulevard/Corbis/Getty Images.
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the units in the network are all working at the same time. There is also no 

distinction between software and hardware in neural networks. Learning 

takes place by making changes to the hardware.

Starting in the 1980s, when clusters of computers were assembled in one 

rack, digital computers have become massively parallel. One of the earliest 

parallel computers was the Connection Machine, designed by Danny Hillis 

in 1985 and sold by Thinking Machines, Inc. An engineer and inventor, 

Hillis trained at MIT when it was becoming clear that much more com-

putational power would be needed to make artificial intelligence achieve 

solutions to immensely complex real-world problems. As the number of 

transistors on a computer chip continued to increase according to Moore’s 

law in the 1990s, it became possible to put many processing units on the 

same chip, many chips on the same board, many boards in the same cabi-

net, and many cabinets in the same room—with the result that today the 

fastest computers on the planet have millions of cores and can achieve 

many millions of billions of operations per second. Exascale computing is 

on the horizon with billions of billions of operations per second.

Simulations of neural networks can take maximum advantage of this 

massively parallel hardware. Multiple cores can be programmed to work in 

parallel on the same network model, which greatly speeds up processing, 

but this also results in delays in communicating between the processors. To 

reduce these delays, companies are building special-purpose digital copro-

cessors that will vastly speed up network simulations, so that cognitive 

tasks like speech and seeing will become single powerful instructions. Our 

smartphones will become a lot smarter when they’re built with deep learn-

ing network chips.

Digital computers have operating systems that separate us from the 

hardware (box 15.1). When we run word processing programs on our lap-

tops or apps on our cell phones, the operating systems take care of all the 

details about where to put our keystrokes into memory, and how to display 

the output on a screen. Our minds run the equivalent of apps on our brains’ 

operating systems, which isolate us from what, where, and how informa-

tion is stored. We are unaware of how our brains store the vast databases of 

experience we have accumulated during our lifetimes, or how our behavior 

is shaped by these experiences. It is possible to make some of the experi-

ences explicit, but we are consciously aware of only the very tip of an ice-

berg. It is a mystery how our brains manage this. If we could figure out how 

the operating systems of our brains work, we could organize big data based 

on the same general principles. Consciousness could then be explained as 

an app running on the brain’s operating system.
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It’s Information, All the Way Down

The information explosion has transformed biology into a quantitative sci-

ence. Biologists traditionally needed little mathematical training beyond 

an introductory course in statistics to analyze their data, which were few 

and hard won. At a symposium on molecular genetics held by the Cold 

Spring Harbor Laboratory on Long Island in 2002, I felt like a fish out of 

water because I was the only one giving a computational talk. Speaking 

before me was Leroy Hood, a molecular geneticist who was on the faculty 

at Caltech for many years. While on sabbatical at Caltech in 1987, I was 

astonished to find that Hood’s lab filled an entire building. Since then, he 

had moved to Seattle, where, in 2000, he cofounded the Institute for Sys-

tems Biology, a new field that is attempting to understand the complexity 

of all the molecular interactions within cells.

Box 15.1

Operating System of a Digital Computer

An operating system controls the programs that run on the hardware of a 

computer. If you are using a PC, the operating system is most often Windows; 

if you are using an iPhone, it is iOS; most servers are running some version of 

UNIX. The operating system allocates memory when needed by the programs; 

it also works behind the scenes to keep track of programs, using processes 

called “daemons,” which run in the background and keep track of utilities 

like printers and displays. The operating system is designed to work on any 

hardware, making your applications portable between computers. 
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In his talk, Hood said that one day he asked himself why he had more 

computer scientists than biologists on his payroll. The reason, he con-

cluded, was that biology had become an information science and that 

computer scientists knew far more about analyzing information than did 

biologists, who had been overwhelmed by the vast amounts of data gen-

erated by modern techniques such as gene sequencing. I could not have 

asked for a better way to motivate my talk, which was about understanding 

how information is stored at synapses between neurons in the brain.

Today systems biology is attracting many computer scientists and physi-

cists to analyze and understand the information that is being generated by 

DNA sequencing and the signals in cells that are controlled by RNA and 

proteins. The 3 billion base pairs in the DNA of a human cell contain all the 

information the cell needs to survive, replicate, and specialize. Some base 

pairs are templates for making proteins, but other parts of the genome con-

tain an abstract code to regulate genes that are used during development to 

guide the construction of the body and brain. Perhaps the most demanding 

construction project in the universe, the construction of brains is guided 

by algorithms embedded in the DNA that orchestrate the development of 

connections between thousands of different types of neurons in hundreds 

of different parts of the brain.

Playing the Long Game

The commercialization of technology developed by basic science research 

typically takes about fifty years. The great discoveries that were made in 

relativity and quantum mechanics during the first decade of the twentieth 

century gave rise to CD players, GPS, and computers in the second half 

of that century. The discovery of DNA and the genetic code in the 1950s 

gave rise to applications in medicine and agribusiness that are having an 

economic impact today. The basic discoveries that the BRAIN Initiative and 

other brain research programs around the world are making today will lead 

to applications fifty years from now that would be considered science fic-

tion today.13 We can expect AIs to have operating systems comparable to 

the one in our brain by 2050. But which companies and which countries 

will control this technology depends on investments and big bets being 

made today. 





When his mother asked young Francis Crick what scientific problems he 

wanted to pursue in life, he told her there were only two that interested 

him: the mystery of life and the mystery of consciousness.1 Crick clearly 

had a keen sense for what is important, but he may not have appreciated 

the difficulty of these problems. Little did his mother know that, decades 

later in 1953, her son and James Watson would discover the structure of 

DNA—the loose thread that would eventually unravel one of life’s great 

mysteries. But Crick (figure 16.1) was not content with this achievement.

After moving to the Salk Institute in 1977, Crick took up his long-

standing interest in consciousness. He decided to focus on the question of 

visual awareness since a great deal was already known about the visual parts 

of the brain, and understanding the neural basis of visual perception would 

serve as a solid foundation for exploring the neural basis of other aspects 

of consciousness.2

That the study of consciousness was out of fashion among biologists in 

the 1980s did not deter Crick. Visual perception was filled with illusions 

and mysteries that defied understanding. Seeking explanations for them 

in anatomical and physiological mechanisms, he developed the novel 

“searchlight hypothesis.”3 Ganglion cells project down the optic nerve to 

the thalamus, which in turn relays the spikes to the visual cortex. But why 

couldn’t the ganglion cells project directly to the cortex? Crick pointed 

out that there was a feedback projection from the cortex back to the thala-

mus that, like a searchlight, might highlight parts of the images for further 

processing.

Neural Correlates of Consciousness

Crick’s closest colleague on the quest to understand consciousness was 

neuroscientist Christof Koch, then at Caltech, with whom he published a 
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series of papers exploring the “neural correlates of consciousness” (NCCs; 

the brain structures and neural activities responsible for generating states 

of conscious awareness).4 In the case of visual awareness, this meant find-

ing correlations between the firing properties of neurons in different parts 

of the brain and visual perception. Crick and Koch hypothesized that we 

are not aware of what happens in the primary visual cortex,5 which is the 

first area of the cerebral cortex to receive input from the retinas; rather, we 

are only aware of what happens at the highest levels of the hierarchy of 

the visual cortex (figure 5.11). Support for this possibility comes from the 

Figure 16.1

Francis Crick with his wife, Odile, and daughter Jacqueline punting on the Cam in 

Cambridge, England, around 1957. Courtesy of Maurice S. Fox.
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study of binocular rivalry, in which two different patterns are presented to 

the two eyes, such as vertical stripes to one eye and horizontal stripes to the 

other eye: rather than seeing a blend of the two images, visual perception 

flips abruptly between the disparate images every few seconds. Different 

neurons in the primary visual cortex respond to the patterns from each eye, 

regardless of which is being consciously perceived at any moment. At the 

higher levels of the visual hierarchy, however, many neurons respond only 

to the perceived image. Thus it is not enough for a neuron to be firing for 

it to be a neural correlate of perception. Apparently, we are only aware of 

what is represented in a subset of the active neurons distributed over the 

hierarchy of visual areas working together in a coordinated way.

Grandmother Cells

In 2004, an epilepsy patient at the UCLA Medical Center whose brain was 

being monitored to detect the origin of the seizures was shown a series of 

pictures of celebrities. Electrodes implanted into the memory centers of the 

patient’s brain reported spikes in response to the photos. In one of these 

patients, a single neuron responded vigorously to several pictures of Halle 

Berry and her name (figure 16.2), but not to pictures of Bill Clinton or Julia 

Roberts or the names of other famous people.6 Neurons were found that 

responded to other celebrities, to specific objects, and to buildings, like the 

Sydney Opera House.

The neurons found by the team led by Itzhak Fried and Christof Koch at 

the University of California, Los Angeles, had been predicted fifty years ago 

when it first became possible to record from single neurons in the brains of 

cats and monkeys. Researchers thought that, in the hierarchy of visual areas 

of the cerebral cortex, the response properties of neurons became more and 

more specific the higher the neurons were in the hierarchy, perhaps so spe-

cific that a single neuron at the top of the hierarchy would only respond to 

pictures of a single person. This became known as the “grandmother cell 

hypothesis,” after the putative neuron in your brain that “recognizes” your 

grandmother.

Even more dramatic were experiments in which patients looked at a 

blend of two images representing familiar individuals and were asked to 

imagine one individual at the expense of the other, competing one, while 

recording from neurons that preferred one or the other image. The sub-

jects were able to increase the firing rates of the neuron that represented 

the face they favored in the blend, while simultaneously decreasing the 

rates of other neurons that preferred the competing face, even though the 
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Figure 16.2

Halle Berry cell. The responses to photos of a single neuron recorded from the hip-

pocampus of a patient. Spikes (blue tics) from six individual trials are shown below 

each photo, along with the average (histograms). (A) Photos of Halle Berry and 

her name elicited a burst of spikes, whereas (B) photos of other actresses and their 

names did not. Halle Barry starred in the 2004 action superhero film Catwoman 

(photo 3). From A. D. Friederici and W. Singer, “Grounding Language Processing on 

Basic Neurophysiological Principles,” Trends in Cognitive Sciences 19, no. 6 (2015): 

329–338, figure 1.



Consciousness 237

visual stimulus was not changing. The experimenters then closed the loop 

by controlling the ratio of the two images in the mixture according to the 

firing rates of the neurons preferring the images, so the subjects could con-

trol the input—the ratio of the two faces—by imagining one or the other 

image. This illustrates that the process of recognition is not simply a pas-

sive process, but depends on active engagement of memory and internal 

attentional control.

Despite this striking evidence, the grandmother cell hypothesis is unlikely 

to be the whole story of visual perception. According to the hypothesis, you 

perceive your grandmother when the cell is active, so it should not fire to 

any other stimulus. Only a few hundred pictures were tested, so we really 

don’t know how selective the “Halle Berry cell” was. Second, the likelihood 

that the electrode happened to record from the only Halle Berry neuron in 

the brain is low; it is more likely that there are many thousands of these 

cells in the brain. There must also be many copies of neurons that respond 

to other famous faces, and many more for everyone you know and every 

object you can recognize. Although there are billions of neurons in the 

brain, there aren’t enough to exclusively represent every object and name 

that a person knows by a large dedicated population of neurons. Finally, 

the response is only a correlation with the sensory stimulus and may not be 

causal. Equally important is the output of the neuron and its downstream 

impact on behavior (the projective field introduced in chapter 5). Nonethe-

less, the selectivity of the responses is striking. Before the recordings began, 

the patient was asked to identify a favorite celebrity, so Halle Barry might 

be overrepresented in the patient’s brain.

Recordings from hundreds of cortical neurons simultaneously in mice, 

monkeys, and humans are leading to an alternative theory for how neu-

rons collectively perceive and decide.7 In recordings from monkeys, stimuli 

and task-dependent signals are broadly distributed over large populations 

of neurons, each tuned to a different combination of features of the stimuli 

and task detail.8 Before long, it will be possible to record from millions of 

neurons and to manipulate their firing rates, as well as to distinguish differ-

ent types of neurons and how they are connected with one another.9 This 

could lead to theories beyond the grandmother cell and a deeper under-

standing of how activity in populations of neurons gives rise to thoughts, 

emotions, plans, and decisions. Of course, there may be more than one way 

for neurons to represent faces and objects. With new recording techniques 

coming online, however, we should soon know the answer.

We have known since the 1980s in trained neural network models 

with one layer of hidden units, and more recently in deep networks, that 
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patterns of activity for each input in neural networks are highly distributed 

in a way that is qualitatively similar to the variety of responses that have 

been observed in populations of cortical neurons (figure 9.2).10 A distrib-

uted representation can be used to recognize many versions of the same 

object, and the same set of neurons can recognize many different objects 

by differentially weighting their outputs. When individual hidden units in 

neural networks are tested in the same way that neurophysiologists record 

from neurons in the visual cortex, sometimes one simulated neuron near 

the top of the hierarchy is found to develop a specific preference for one 

of the objects. But, because the remaining neurons carry redundant signals 

representing the object, the performance of the neural network does not 

appreciably change when such a unit is cut out of it. The robust perfor-

mance of neural networks despite damage is a major difference between the 

architecture of both these networks and the brain itself and that of digital 

computers.

How many cortical neurons are needed to discriminate between many 

similar objects such as faces? From imaging studies, we know that several 

areas of the human brain respond to faces, some with a high degree of  

selectivity. But, within these areas, the information about any single faces is 

broadly distributed among many neurons. Doris Tsao at Caltech has recorded 

from neurons in monkey cortex that respond selectively to faces and has 

shown that it is possible to reconstruct faces by combining the inputs from 

200 face cells, a relatively small subset of all face-selective neurons.11

When Is the Time of a Visual Event Perceived?

Another aspect of visual awareness are the brain’s efforts to register events, 

like flashes of light, as occurring at specific times. The time delays of neu-

rons in the visual cortex in response to a flashed visual stimulus vary from 

25 to 100 milliseconds, often within the same region of the cortex. None-

theless, we can determine the order of two flashes that occur within 40 

milliseconds of each other, and the order of two sounds with less than a 

10-millisecond time difference. To make this even more paradoxical, the 

processing in the retinas takes a certain amount of time, which is not fixed 

but depends on the intensity of the flash, so that there is a delay in the 

arrival time of the first spike from a dim flash compared to one from a 

bright flash, even though the dim and bright flashes appear to occur simul-

taneously. This raises the question of why visual percepts seem to have a 

unity that is not at all apparent from the temporally and spatially distrib-

uted patterns of activity throughout the cortex.
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The question of simultaneity becomes even more vexing when we make 

cross-modal comparisons. When you watch someone chop down a tree, 

assuming you’re close enough, you simultaneously see and hear the axe hit 

the tree with each blow, even though the speed of sound is much slower 

than that of light. Moreover, the illusion of simultaneity is maintained 

as the distance from the tree increases,12 even though the absolute delay 

between the visual and auditory signals as they reach your brain can vary 

more than 80 milliseconds before the illusion is broken, and the sound is no 

longer perceived as simultaneous with the axe hit (at about 100 feet away).

Researchers who study the temporal aspects of vision have uncovered 

another phenomenon called the “flash-lag effect.” This can be observed 

when an airplane with a flashing taillight passes overhead and the flashes 

and tail don’t seem to line up—the flashes seem to lag behind the tail. 

Another common occurrence is at soccer matches when a running player 

appears to be ahead of a kicked ball (the flash), which can elicit an offside 

call from an assistant referee who has not compensated for the illusion. 

This can be studied in the lab with a visual stimulus illustrated in figure 

16.3. In the flash-lag effect, a flash and a moving object at the same loca-

tion appear to be offset. 

Figure 16.3

Flash-lag effect. (Top) An annulus moves from left to right (black). As it passes  

the center a light briefly flashes below it (yellow). (Bottom) Subjects report that the 

object appears to be displaced to the right at the time of the flash. Courtesy of David 

Eagleman.
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One leading explanation—which makes intuitive sense, and for which 

there is some evidence from brain recordings—is that the brain predicts 

where the moving spot is going to be a short time later. But perceptual 

experiments have shown that this cannot be the explanation for the flash-

lag effect because the perception attributed to the time of the flash depends 

on events that occur in the 80 milliseconds after the flash, not those which 

occur before the flash (which would be used to make a prediction).13 This 

explanation for the flash-lag effect means that the brain is “postdictive” 

rather than predictive; that is, the brain is constantly revising history to 

make the conscious present consistent with the future. This is one example 

of how our brains generate plausible interpretations based on noisy and 

incomplete data, something that magicians have exploited for sleight-of-

hand effects.14

Where in the Brain Is a Visual Object Perceived?

Brain imaging gives us a global picture of our brains’ activity when we per-

ceive something compared to when we don’t. Using experimental evidence, 

researchers have developed the particularly appealing hypothesis that we 

only become consciously aware of something when the level of brain activ-

ity in the front of the cortex, which is important for planning and mak-

ing decisions, reaches a threshold level and ignites feedback pathways.15 

Though intriguing, these observations are not compelling since they don’t 

establish causality, but only a correlation. If a neural correlate of conscious-

ness is responsible for—causes—a conscious state, it should be possible by 

changing the NCC to change that conscious state. Doris Tsao has shown 

that this indeed was the case in her 2017 experiment; by stimulating face 

areas in the visual cortex of monkeys, she was able to interfere with their 

discrimination of faces.16 When a similar experiment was done in humans, 

subjects reported that faces looked as if they were melting.17

New techniques such as optogenetics18 have recently become available 

to selectively manipulate the activity of neurons, which allows the causal-

ity of the NCCs to be tested. This may be difficult to do if perceptual states 

correspond to highly distributed patterns of activity, but, in principle, this 

approach could reveal how perceptions and other features of consciousness 

are formed.19

Learning Where to Look

Visual search is a task that depends on both bottom-up sensory processing 

and top-down attentional processing driven by expectation (figure 16.4A). 
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These two types of processing are intermingled in the brain and difficult to 

disentangle, but recently a novel search task was developed to tease them 

apart.20 Participants were seated in front of a blank screen and told that 

their task was to explore the screen with their eyes to find a hidden target 

location that would sound a reward tone when their gaze fixated near it. 

The hidden target position varied from trial to trial and was drawn from a 

Gaussian distribution—a bell-shaped curve characterized by the position 

of its peak and width—that was not known to participants but remained 

constant during a session (figure 16.4D).

At the start of a session, participants had no prior knowledge to inform 

their search. Once a fixation was rewarded, they could use that feedback 

to assist on the next trial. As the session proceeded, participants improved 

their success rates by developing an expectation for the distribution of hid-

den targets and using it to guide future searches. After approximately a 

dozen trials, the participants’ visual fixations narrowed to the region with 

high target probability. A characterization of this effect for all participants 

is shown in figure 16.4D. The search region, initially broad, narrowed as 

the session progressed. Surprisingly, many of the subjects were not able to 

articulate their search strategy, even though their first saccade after a few 

trials was invariably to the center of the invisible target distribution.

These experiments point toward unconscious control of actions that 

is guided by experience. By eliminating the visual input, the unconscious 

processes can be studied in isolation. The brain areas that are involved  

in this search task include the visual cortex and the superior colliculus, 

which controls the topographic map of the visual field and directs sac-

cades to visual targets, respectively, working closely with other parts of the 

oculomotor system. Learning also involves the basal ganglia, an important 

part of the vertebrate brain that learns sequences of actions through rein-

forcement learning.21 The difference between the expected and received 

reward is signaled by a transient increase in the firing rate of dopamine 

neurons in the midbrain, which regulates synaptic plasticity and influences 

how decisions and plans are made at an unconscious level (as discussed  

in chapter 10).

Passages

Near the end of his life, Francis Crick invited me to visit him at his home to 

discuss the claustrum, a mysterious thin layer of cells just beneath the cor-

tex that receives projections from many cortical areas and in turn projects 

back. Even though Crick was terminally ill, he focused on finishing his last 

paper on the hypothesis that the claustrum was responsible for the unity of 
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Figure 16.4

Learning where to look. (A) An experienced pedestrian has prior knowledge of where 

to look for signs, cars, and sidewalks in this street scene. (B) Ducks foraging in a large 

expanse of grass. (C) A representation of the screen is superimposed with the hidden 

target distribution that is learned over the session as well as sample eye traces from 

three trials for participant M. The first fixation of each trial is marked with a black 

dot. The final and rewarded fixation is marked by a shaded grayscale dot. (D) The 

region of the screen sampled with fixation shrinks from the entire screen on early tri-

als (light gray circles; first five trials) to a region that approximates the size and posi-

tion of the Gaussian-integer distributed target locations (squares, color proportional 

to the probability as given in (C) on later trials (red circles; from trials 32–39). From 

L. Chukoskie, J. Snider, M. C. Mozer, R. J. Krauzlis, and T. J. Sejnowski, “Learning 

Where to Look for a Hidden Target,” figure 1. 
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consciousness by virtue of its central position. Only a handful of research-

ers had ever worked on the claustrum, and he called nearly every one of 

them to ask for further information. My visit was the last time I would 

ever see him. Francis died on July 28, 2004, while working to complete 

the manuscript of his last paper22 and to finish his search for the origins of 

consciousness.

Fifty years after he and James Watson discovered the structure of DNA 

in 1953, the human genome was sequenced. Crick told me it had never 

occurred to him that it would ever be possible. How far will we be fifty 

years from now on the problem of consciousness? By then, we will have 

machines that interact with us in much the same way that we now interact 

with one another, through speech, gestures, and facial expressions. It may 

be easier to create consciousness than to fully understand it.

I suspect that we can make progress faster by first understanding uncon-

scious processing—all the things we take for granted when we see, hear, 

and move. We have already made progress on understanding motivational 

systems, which strongly influence our decisions; and attentional systems, 

which help guide our search for information from the world. With a deeper 

understanding of the brain mechanisms that govern perception, decision 

making, and planning, the problem of understanding consciousness could 

disappear like the Cheshire cat, leaving only a broad grin.23





An Oxford-educated chemist who worked on the origins of life, Leslie Orgel 

(figure 17.1, right) was a colleague at the Salk Institute for many years and 

one of the smartest scientists I have ever met. Discussions with him at fac-

ulty lunch on Fridays were always fascinating. The origin of life goes back 

billions of years to a time when the earth was so different from today that 

it would not support life as we know it. Conditions were harsh, and there 

was little oxygen in the atmosphere. Bacteria were preceded on the earth 

by archaea, but what came before archaea? DNA is common to all cells 

today, but what came before DNA? In 1968, Leslie Orgel and Francis Crick 

speculated that RNA, which is derived from DNA in cells, might have been 

the precursor, but this would require RNA to self-replicate. Evidence for this 

possibility was found in the form of ribozymes, RNA-based enzymes that 

can catalyze RNA reactions,1 and today most researchers in the field believe 

it is quite possible that all life descended from an earlier “RNA world.”2 But 

where did RNA come from? Unfortunately, we have little evidence from 

that period to go on.

Orgel’s Second Rule

Time and again, universally held truths have been shattered by surprising 

discoveries. We looked up and saw the sun going around the earth, but 

we were the ones going around the sun. The theory of evolution put us 

humans in our place, though even today it remains difficult for many to 

accept. Many years from now, our descendants will look back at our era and 

say that our intuitions about intelligence were at best oversimplified and 

held back progress in artificial intelligence for fifty years. As Orgel’s second 

rule states, evolution is cleverer than you are.

Our conscious awareness is the tip of an iceberg, most of the workings of 

our brain are inaccessible to introspection. We have words like “attention” 
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and “intention” that we use to describe our behavior, but these are slippery 

concepts that hide the complexity of the brain processes underlying them. 

And artificial intelligence based on intuitive folk psychology has been dis-

appointing. We see, but we know not how. We think, and therefore believe 

that we are, but the machinery behind thinking is a mystery. There is no 

survival advantage for nature to reveal to us how the brain really works. 

Orgel’s second rule prevails.

As noted in chapter 2, we have highly evolved visual systems, but this 

does not make us experts on how we see.3 Many of us are not even aware 

we have a fovea with sharp vision that is only 1 degree of arc across, about 

the size of a thumb at arm’s length, and that we are legally blind beyond 

the fovea. When I once pointed this out to my mother, she said she didn’t 

believe me because it was perfectly clear everywhere she looked. But we 

have the illusion of high resolution everywhere because we can rapidly 

reposition our eyes. Are you aware that when you gaze at an object, your 

eyes dart back and forth over the object at three times a second? Periph-

eral vision may have low spatial resolution but is exquisitely sensitive to 

changes in brightness and motion. A major stream in visual cortex, separate 

from the one that recognizes objects, is devoted to moving around in space. 

Figure 17.1

Francis Crick (left) and Leslie Orgel (right) at the Salk Institute in 1992 on the trail 

of the origins of consciousness and the origins of life, respectively. Courtesy of The 

Salk Institute.
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When the pioneers of computer vision set out to engineer vision, their goal 

was to create a complete internal model of the world from an image, a goal 

that has proven difficult to achieve. But a complete and accurate model 

may not be necessary for most practical purposes, and it might not even be 

possible given the low sampling rate of current video cameras.

Based on evidence from psychophysics, physiology, and anatomy, Patri-

cia Churchland, neuropsychologist V. S. Ramachandran, and I came to the 

conclusion that the brain represents only a limited part of the world, only 

the part needed at any moment to carry out the task at hand.4 This also 

makes it easier for reinforcement learning to narrow down the number of 

possible sensory inputs that contribute to obtaining rewards. The apparent 

modularity of vision (its relative separateness from other sensory processing 

streams) is also an illusion. The visual system integrates information from 

other streams, including signals from the reward system indicating the val-

ues of objects in the scene, and the motor system actively seeks information 

by repositioning sensors, such as moving eyes and, in some species, ears to 

gather information that may lead to rewarding actions.

Brains evolved through a long process of progressive adaptation to the 

environment; nature could not afford to start with a clean slate but had to 

make do by modifying parts and pieces while keeping the current species 

viable. In his book Evolving Brains,5 John Allman illustrates progressive evo-

lution on an urban human scale by recounting a visit to the boiler room 

of an old power plant in San Diego, where he noticed an intricate array of 

small pneumatic tubes next to a bank of vacuum tubes, alongside several 

generations of computer control systems. Because the plant was needed for 

continuous power output, it could not be shut down and retrofitted with 

each new technology, so the old control systems were left in place and 

the new ones integrated into them. So, too, with evolving brains: nature 

could not afford to throw out an old brain system, but tinkered with the 

current developmental plan, occasionally adding a new layer of control. 

Gene duplication was a favorite route for introducing a copy of a gene that 

could mutate for a new function. Whole genome duplication also occurred, 

which could lead to an entirely new species.

The Case against Noam Chomsky

Psychologists who studied learning in the 1930s approached behavior as 

a transformation of sensory inputs into motor outputs and called them-

selves “behaviorists.” Associative learning was the focus for behaviorism, 

and many laws of learning were uncovered by training animals on different 

reward schedules. B. F. Skinner at Harvard University was a leader in this 
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field and wrote several popular books to explain the consequences of his 

discoveries for society.6 Interest about behaviorism was high in the popular 

press at that time.

In 1971, the eminent linguist Noam Chomsky (figure 17.2) wrote a dev-

astating attack on behaviorism in general, and B. F. Skinner in particular, in 

the New York Review of Books (figure 17.3).7 Here is a sample of his argument 

specifically on language:

But what does it mean to say that some sentence of English that I have never 

heard or produced belongs to my “repertoire,” but not any sentence of Chinese 

(so that the former has a higher “probability”)? Skinnerians, at this point in the 

discussion, appeal to “similarity” or “generalization,” but always without char-

acterizing precisely the ways in which a new sentence is “similar” to familiar 

examples or “generalized” from them. The reason for this failure is simple. So far 

Figure 17.2

Noam Chomsky in 1977, after he wrote “The Case against B. F. Skinner” for the 

New York Review of Books. Chomsky’s essay had a profound impact on a generation 

of cognitive psychologists, who would embrace symbol processing as a conceptual 

framework for cognition and discount the essential role of brain development and 

learning in cognition and intelligence. Hans Peters/Anefoto.
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Figure 17.3

Cover headline for Noam Chomsky’s 1971 takedown of B. F. Skinner in the New York 

Review of Books. Chomsky’s essay would influence a generation of scientists to aban-

don behavioral learning and take up symbol processing as a way to explain cogni-

tion. But with the symbolic approach, artificial intelligence never achieved cognitive 

levels of performance. B. F. Skinner was on the right track with reinforcement learn-

ing, which Chomsky derided: today’s most compelling AI applications are based on 

learning, not logic. Courtesy of the New York Review of Books.



250 Chapter 17

as is known, the relevant properties can be expressed only by the use of abstract 

theories (for example, a grammar) describing postulated internal states of the 

organism, and such theories are excluded, a priori, from Skinner’s “science.” The 

immediate consequence is that the Skinnerian must lapse into mysticism (unex-

plained “similarities” and “generalization” of a sort that cannot be specified) as 

soon as the discussion touches the world of fact. While the situation is perhaps 

clearer in the case of language, there is no reason to suppose that other aspects of 

human behavior will fall within the grasp of the “science” constrained by a priori 

Skinnerian restrictions.
8

From today’s perspective, we can see that Chomsky understood what was 

at stake, but that he simply didn’t know the power of learning. Deep learn-

ing has shown us that, like the neural networks of the brain itself, model 

neural networks are capable of “generalization” of the sort that Chomsky 

dismissed as “mysticism,” and that they can be trained to selectively rec-

ognize speech from many languages, to translate between languages and 

to generate captions for images, with perfectly good syntax. The ultimate 

irony is that machine learning has solved the problem of automatically 

parsing sentences, something that Chomsky’s “abstract theories” of syntax 

never accomplished despite strenuous efforts by computational linguists. 

When coupled with reinforcement learning, whose study in animals Skin-

ner pioneered, complex problems can be solved that depend on making a 

sequence of choices to achieve a goal. This is the essence of problem solving 

and ultimately the basis of intelligence.

 Dripping with disdain, Chomsky’s essay went far beyond taking down 

B. F. Skinner: it challenged—and indeed dismissed—learning as a way to 

understand cognition. This had a decisive influence on cognitive psychol-

ogy in the 1970s. That associative learning could ever give rise to a cogni-

tive behavior as complex as language, the crux of Chomsky’s argument 

ran, was simply unimaginable (at least to Chomsky). Note, however, that 

this argument was based on ignorance. Just because the world’s leading 

linguist says he cannot imagine something doesn’t make it impossible. But 

Chomsky’s rhetoric, which resonated with the zeitgeist of the 1970s, was 

persuasive. By the 1980s, the symbol processing approach to cognition had 

become the only game in town and formed the basis for a new field called 

“cognitive science,” an amalgam of cognitive psychology, linguistics, phi-

losophy, and computer science. Neuroscience was the weak sister of cogni-

tive science and was more or less ignored until cognitive neuroscience was 

launched in the 1990s.
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Poverty of Imagination

Chomsky has since used the same rhetorical arguments many times, most 

notably in his argument for the innateness of language based on “poverty 

of the stimulus,”9 which asserts that a baby does not hear enough examples 

of sentences to be able to learn the rules of syntax. But a baby is not a com-

puter getting a string of disembodied symbols from the world. A baby is 

immersed in a world of rich sensory experiences and is learning about the 

nature of the world at a breathtaking pace.10 The world is filled with mean-

ingful experiences that are tied to sounds, which begin in the womb, a form 

of unsupervised learning, and it is only after this foundation is laid that lan-

guage generation begins, first with babbling, then with single words, and 

much later with syntactically correct sequences of words. What is innate 

is not grammar, but the ability to learn language from experience and to 

absorb the higher-order statistical properties of utterances in a rich cogni-

tive context.

What Chomsky could not imagine was that, when coupled with deep 

learning of the environment and a deeply learned value function honed by 

a lifetime of experience, a weak learning system like reinforcement learning 

can indeed give rise to cognitive behaviors, including language. This was 

not at all obvious to me in the 1980s, although I should have realized that, 

if a tiny network like NETtalk could handle English pronunciation, it was 

likely that, in their representations of words, learning networks, whether 

model or cortical, would have a natural affinity for language. Chomsky’s 

position was based on a poverty of imagination, but it follows logically 

from Orgel’s second rule: evolution is cleverer than you are, and that 

includes experts like Chomsky. Indeed, when an expert tells you something 

in nature is impossible, beware—no matter how plausible or convincing the  

argument.

Chomsky’s emphasis on word order and syntax became the dominant 

approach in linguistics in the latter half of the twentieth century. But even 

a “bag of words” model neural network that throws away word order does 

remarkably well at determining the topic of an article, such as sports or 

politics, and its performance can then be improved by taking into account 

the immediate neighborhoods of words in the article. The lesson from deep 

learning is that, even though word order carries some information, seman-

tics, based on the meaning of words and their relationships with other 

words, is more important. Words are represented in the brain by a rich 

internal structure. And as we learn more about how words are semantically 

represented in deep learning networks, we may have the beginnings of a 
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new linguistics. Just as there is no reason why nature should burden us with 

knowing how we see, there is no reason why our intuition into how we use 

language should be any better.

Let’s consider what the internal structure of words might look like in 

a model network trained on a natural language task. Although a network 

may be trained on a particular problem, the way the network represents its 

inputs can be used to solve other problems. A good example is a network 

trained to predict the next word in a sentence. The representations of words 

in the trained network have internal structure, in the form of patterns of 

activity of all the units in the network, that can be used to draw analo-

gies between word pairs.11 For example, when these activity patterns are 

projected onto a plane, vectors connecting countries to their capital cities 

are all the same. The network learned to automatically organize concepts 

and learn implicitly the relationships between them, without having any 

supervised information about what a capital city means (figure 17.4). This 

shows that the semantics of countries and capitals can be extracted from 

text using unsupervised learning.

I once opened a presentation at MIT by declaring, “Language is too 

important to be left to the linguists.”12 What I meant was that we shouldn’t 

stop at describing language at the behavioral level. We should seek to under-

stand the biology of language, the underlying biological mechanisms, and 

how language ability evolved in Homo sapiens. This has become possible 

with noninvasive brain imaging and with recordings directly from the 

brains of epilepsy patients. Equally important are brain studies to under-

stand the differences that made language possible by comparing human 

brains with those of chimpanzees and other higher primates; the ability to 

use language happened in an evolutionary instant compared to the earlier 

and much slower acquisition of sensorimotor skills. Powerful genetic tools 

will allow us to dissect the development of the brain and to understand 

how evolution gave rise to our innate ability to learn languages by tinkering 

with development.

Language can be used to mislead and control by appealing to plausibil-

ity and by arguing from ignorance, which has unfortunate consequences 

far beyond science. History is filled with demagogues, who are eventually 

abandoned when the poverty of their imaginations is exposed. Fortunately, 

brains have been around a lot longer than language, and we will be bet-

ter served if we rely on the parts of our brains that evolved long before 

language.13
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The Case against Black Boxes

In retrospect, behaviorism and cognitive science, which in the twentieth 

century took opposite approaches to behavior, made the same mistake by 

ignoring the brain. Behaviorists did not want to be misled by introspection, 

so they made it a point of honor not to look into the brain for guidance. 

They believed that it would be possible to discover behavioral laws for any 

contingency by carefully controlling the inputs and outputs of the black 

box. Functionalist cognitive scientists, for their part, rejected behaviorism, 

believing they could discover the internal representations of the mind, but 

because they also believed that the details of how the brain implemented 

the representations were irrelevant,14 the internal representations they 

Figure 17.4

Internal representation of words in a network trained to predict the next word in a 

sentence. Each word is a vector of activity in the network, which can be projected 

down to the two-dimensional plane as shown above. The arrows connect countries 

to their capitals. Because all these arrows are parallel to each other and about the 

same length, the word pairs are represented analogously. For example, if you want 

to find out the capital of a different country, you can add this arrow to the vector of 

the country and retrieve its capital vector. From: T. Mikolov, I. Sutskever, K. Chen, G. 

Corrado, and J. Dean, “Distributed Representations of Words and Phrases and Their 

Compositionality,” figure 2. Courtesy of Jeffrey Dean.



254 Chapter 17

developed were based on unreliable intuition and folk psychology. Nature 

was cleverer than they were.

The internal states of the black box are tremendously complex; discover-

ing internal representations and the laws of behavior is thus exceedingly 

difficult. If someday we do discover the laws of behavior, we may well be 

able to give a functional account of them, although this account will prob-

ably be as counterintuitive as quantum mechanics was to physicists. To 

discover the laws of behavior, we will need all the help we can get from 

the brain. Deep learning networks are good examples of the progress that 

can be made by paying attention to some general features of brain archi-

tecture and general principles of brain function. I have no doubt that the 

hard-line functionalists will protest, but we need to move forward, not look 

backward. At every step along the way, adding a new feature from brain 

architecture has boosted the functionality of deep learning networks: the 

hierarchy of cortical areas; the brain’s coupling of deep with reinforcement 

learning; working memory in recurrent cortical networks; and long-term 

memory of facts and events—to name just a few. There are many more 

computational principles of the brain that we can learn from and make the 

most of.15

In their experiments, neuroscientists who study perception, memory, 

and decision making typically use trial-based tasks, in which laboratory 

animals are trained to give the desired response to a stimulus. After months 

of training, these stimulus-driven responses become reflexive, rather than 

reflective, which can reveal mechanisms underlying habitual behaviors 

but not cognitive behaviors. Thinking is not a reflex; it can occur in the 

absence of any sensory stimulus; but the traditional way that experiments 

are designed ignores ongoing spontaneous activity that is present in the 

absence of sensory inputs. New methods are needed to study internal activ-

ity that is neither sensory nor motor related, which includes conscious 

thinking and unconscious processing. This is beginning to happen now 

that brain imaging experiments have revealed resting states that spon-

taneously occur when someone is put in a scanner and asked to “rest.” 

The mind wanders when there is nothing to do and thoughts show up 

as a changing pattern of brain activity that we can see but do not yet  

understand.

Brain imaging, and especially noninvasive functional magnetic reso-

nance imaging (fMRI), has opened up new ways to study social interactions 

and decision making, spawning a new field called “neuroeconomics.”16 

Because humans are not the rational actors often assumed in classical 

economics, we need to build a behavioral economics based on actual not 
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idealized human judgment and motivation as these emerge from complex 

internal brain states.17 As noted in chapter 10, dopamine neurons have a 

powerful influence on motivation by representing reward prediction error. 

Brain imaging of social interactions has probed human motivation in ways 

that purely behavioral experiments could not. The goal is to replace a the-

ory of rational decisions based on logic with a theory of probabilistic deci-

sions based on prior experience.

The Case against Marvin Minsky

The early history of neural networks is a case study in how a small but influ-

ential group can derail the exploration of a competing research direction. 

Near the end of Perceptrons, Marvin Minsky and Seymour Papert (figure 

17.5) expressed the opinion that the perceptron learning algorithm could 

not be extended to multilayer perceptrons:

The problem of extension is not merely technical. It is also strategic. The percep-

tron has shown itself worthy of study despite (and even because of!) its severe 

limitations. It has many features to attract attention: its linearity; its intriguing 

learning theorem; its clear paradigmatic simplicity as a kind of parallel com-

putation. There is no reason to suppose that any of these virtues carry over to  

the many-layered version. Nevertheless, we consider it an important research 

Figure 17.5

Marvin Minsky and Seymour Papert in 1971, shortly after they wrote Perceptrons. 

This excellent mathematical analysis of simple networks had a chilling effect on 

a generation of researchers pursuing approaches to artificial intelligence based on 

learning in multilayer networks. Cynthia Solomon/Courtesy of MIT. 
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problem to elucidate (or reject) our intuitive judgment that the extension is ster-

ile. Perhaps some powerful convergence theorem will be discovered, or some pro-

found reason for the failure to produce an interesting “learning theorem” for the 

multilayered machine will be found.
18

 

Sterile, indeed. This ungrounded “intuition” in Minsky and Papert’s oth-

erwise excellent book had a chilling influence on the development of learn-

ing in neural networks and set back research for a generation, although I 

personally benefited from this delay because it made my career possible. 

But I had an opportunity to look behind the curtain in the twilight of  

Minsky’s career.

I was invited to attend the 2006 Dartmouth Artificial Intelligence  

Conference, “AI@50,” a look back at the seminal 1956 Summer Research 

Project on artificial intelligence held at Dartmouth and a look forward to 

the future of artificial intelligence.19 Five of the original ten pioneers from 

the 1956 project were in attendance: John McCarthy (Stanford), Marvin 

Minsky (MIT), Trenchard More (IBM), Ray Solomonoff (University of Lon-

don), and Oliver Selfridge (MIT). It was a fascinating meeting both scientifi-

cally and sociologically.

In his talk “Artificial Intelligence Vision: Progress and Non-Progress,” 

Takeo Kanade (from Carnegie Mellon) noted that computer memories 

back in the 1960s were tiny by today’s standards and could hold only one 

image at a time. For his doctoral dissertation in 1974, Takeo had shown 

that, though his program could find a tank in one image, it was too dif-

ficult for it to do so in other images where the tank was in a different posi-

tion and the lighting was different. But, by the time his early students 

graduated, the programs they designed could recognize tanks under more 

general conditions because computers were more powerful. Today his stu-

dents’ programs can recognize tanks in any image. The difference is that 

today we have access to millions of images that sample a wide range of 

poses and lighting conditions, and computers are millions of times more  

powerful.

In “Intelligence and Bodies,” Rodney Brooks (from MIT) spoke about 

his experience with building robots that crawl and meander. Intelligence 

evolved in brains to control movements, and bodies evolved to interact 

with the world through that intelligence. Brooks departed from the tradi-

tional controllers used by roboticists and used behavior rather than com-

putation as the metaphor for designing robots. As we learn more from 

building robots, it will become apparent that the body is a part of the  

mind.
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In “Why Natural Language Processing is Now Statistical Natural Lan-

guage Processing,” Eugene Charniak explained that a basic part of grammar 

is to tag parts of speech in a sentence. This is something that humans can 

be trained to do much better than the extant parsing programs. The field 

of computational linguistics initially tried to apply the generative grammar 

approach pioneered by Noam Chomsky in the 1980s, but the results were 

disappointing. What eventually worked was to hire Brown undergraduates 

to hand-label the parts of speech for thousands of articles from the Wall 

Street Journal, and then to apply statistical techniques to identify the most 

likely part of speech for a particular word in the neighborhood of other spe-

cific words. Many examples are needed because most words have multiple 

meanings, and there are many different contexts for each word. Automatic 

tagging of parts of speech in sentences is now a solved problem based on 

machine learning.

These success stories had a common trajectory. In the past, computers 

were slow and only able to explore toy models with just a few parameters. 

But these toy models generalized poorly to real-world data. When abundant 

data were available and computers were much faster, it became possible to 

create more complex statistical models and to extract more features and 

relationships between the features. Deep learning automates this process. 

Instead of having domain experts handcraft features for each application, 

deep learning can extract them from very large data sets. As computation 

replaces labor and continues to get cheaper, more labor-intensive cognitive 

tasks will be performed by computers.

In his summary talk at the end of the conference, Marvin Minsky started 

out by saying how disappointed he was both by the talks and by where 

AI was going. He explained why: “You’re not working on the problem of 

general intelligence. You’re just working on applications.” The conference 

was supposed to be a celebration of the progress we had made, so his rebuke 

stung. My talk about recent progress with reinforcement learning and the 

remarkable results achieved by TD-Gammon in teaching networks to play 

champion-level backgammon had not impressed him. He dismissed this as 

a mere game.

What did Minsky mean by “general intelligence”? In his book The Society 

of Mind,20 the premise is that general intelligence emerges from the interac-

tions between simpler agents. Minsky once said that the biggest source of 

ideas about his theory came from trying to create a machine that used a 

robotic arm, a video camera, and a computer to build a structure from chil-

dren’s blocks (figure 2.1).21 Which sounds suspiciously like an application. 

But a concrete application forces you to focus and get to the bottom of a 
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problem in a way that abstract theorizing cannot. The successes reported 

by the speakers at the Dartmouth conference came with deep insights 

into concrete problems that paved the way for a more general theoretical 

understanding. Perhaps a better theory of general intelligence will someday 

emerge from these narrow AI successes.

Our brains don’t simply sit around generating abstract thoughts. They 

are connected intimately with all parts of our bodies, which in turn are 

connected intimately with the world through our sensory inputs and 

motor effectors. Biological intelligence is therefore embodied. Even more 

important, our brains develop through a long process of maturation while 

interacting with the world. Learning is a process that coincides with devel-

opment and continues long after we reach adulthood. Learning is therefore 

central to the development of general intelligence. It is interesting that one 

of the most difficult unsolved problems in artificial intelligence is common 

sense, something noticeably absent in children, and something that emerg-

ing slowly in most adults only after prolonged experience with the world. 

Emotions and empathy, which often are ignored in AI, are also an essential 

aspect of intelligence.22 Emotions are global signals to prepare the brain for 

actions that cannot be decided by local brain states.

There was a banquet on the last day of AI@50. At the end of the dinner, 

the five returning members of the 1956 Dartmouth Summer Research Proj-

ect on Artificial Intelligence made brief remarks about the conference and 

the future of AI. In the question and answer period, I stood up and, turning 

to Minsky, said: “There is a belief in the neural network community that 

you are the devil who was responsible for the neural network winter in the 

1970s. Are you the devil?” Minsky launched into a tirade about how we 

didn’t understand the mathematical limitations of our networks. I inter-

rupted him—“Dr. Minsky, I asked you a yes or no question. Are you, or are 

you not, the devil?” He hesitated for a moment, then shouted out, “Yes, I 

am the devil!”

In 1958, Frank Rosenblatt built an analog computer that was designed 

to emulate a perceptron because digital computers were painfully slow at 

simulating network models, which were highly compute intensive. By the 

1980s, computer power had increased greatly and we were able to explore 

learning algorithms through simulations of small networks. But it was not 

until the 2010s that sufficient computer power became available to scale up 

networks to sizes that could solve real-world problems.

Minsky’s doctoral dissertation in mathematics from Princeton in 1954 

was a theoretical and experimental study of computing with neural  
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networks. He had even built small networks from electronic parts to see 

how they behaved. The story I heard when I was a graduate student at 

Princeton in physics was that there wasn’t anyone in the Mathematics 

Department who was qualified to assess his dissertation,23 so they sent it 

to the mathematicians at the Institute for Advanced Study in Princeton 

who, it was said, talked to God. The reply that came back was, “If this isn’t 

mathematics today, someday it will be,” which was good enough to earn 

Minsky his Ph.D. And neural networks have indeed given rise to a new class 

of mathematical functions that are spurring new studies and are on their 

way to becoming a new branch of mathematics. The youthful Minsky was 

ahead of his time.

Passages

Marvin Minsky died in 2016, steadfast in his belief that neural networks 

were a dead end on the way to achieving general artificial intelligence. In 

a thoughtful essay on his friendship with Minsky, Stephen Wolfram wrote: 

“And although I don’t think anyone could have known it then, we now 

know that the neural networks Marvin was investigating as early as 1951 

were actually on a path that would ultimately lead to just the kind of 

impressive AI capabilities he was hoping for. It’s a pity it took so long, and 

Marvin barely got to see it.”24

Shortly after Minsky’s death, Alex Graves, Greg Wayne, and colleagues, 

researchers at DeepMind, achieved the next step toward a general artificial 

intelligence based on deep learning by adding a dynamic external mem-

ory.25 Activity patterns can only be stored temporarily in a deep recurrent 

neural network, which makes it difficult to emulate reasoning and infer-

ence. By adding a stable memory to the network that can be written to 

and read back with the same flexibility as a digital computer memory, the 

researchers demonstrated a network trained with reinforcement learning 

that could answer questions that required reasoning. For example, one such 

network reasoned about paths in the London Underground and another 

answered questions about genealogical relationships in a family tree. The 

dynamic memory network was also able to master the Blocks World trans-

fer task that had challenged the MIT AI Lab in the 1960s (figure 2.1). This 

brings us back to where we started in chapter 2.

Francis Crick died in 2004 and Leslie Orgel shortly thereafter, in 2007, 

marking the end of an era at the Salk Institute. Now that these scientific 

giants are no longer with us, a new generation is forging ahead. I have 
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been at the Salk Institute for thirty years, half of its lifetime. Starting out 

as a family in 1960, with faculty and staff in the same little boat, the Salk 

was small enough that everyone knew one another. But even today, with a 

complement of 1,000, it still has a family feeling, testimony to the enduring 

culture of an institution.

We are one species in a great chain of being, going back to bacteria and 

before. It is a miracle that we have arrived at the brink of understanding 

brains and how they evolved, which will forever change how we think 

about ourselves.



Francisco Crick in Paradiso

Born and educated in South Africa, Sydney Brenner participated in the 

early days of molecular genetics at Cambridge University (figure 18.1). He 

shared an office at the Laboratory of Molecular Biology (LMB) with Francis 

Crick. What do you do for your next project after discovering the structure 

of DNA and working out the genetic code? Francis decided to focus on 

the human brain, and Sydney inaugurated a new model organism, Cae-

norhabditis elegans (C. elegans), a roundworm that lives in the soil, is only 

1 millimeter long, and has only 302 neurons. This nematode has served as 

the starting point for many breakthroughs in understanding, by following 

every cell in the body over time, how a creature develops from an embryo, 

for which Sydney shared the Nobel Prize in Physiology or Medicine in 2002 

(with H. Robert Horvitz and John E. Sulston). Brenner also is famous for 

his wit. In his Nobel speech, he praised the worm: “The title of my lecture 

is ‘Nature’s gift to Science.’ It is not a lecture about one scientific journal 

paying respects to another, but about how the great diversity of the living 

world can both inspire and serve innovation in biological research.”1 Syd-

ney Brenner, it would seem, was present at the Creation.

The three lectures given by Brenner at the Salk Institute under the series 

title “Reading the Human Genome”2 in 2009 were tour de forces, delivered 

without a single slide or prop. Noting that no human, but only computers, 

had ever read the entire human genome, base pair by base pair, Sydney 

took it as his goal to do just that, and when he did, he discovered all sorts 

of interesting similarities between stretches of DNA in different genes and 

across species.

Sydney is peripatetic. He has an experimental project in Singapore; he 

was the founding president of the Okinawa Institute of Science and Tech-

nology; and he is a senior fellow at the Janelia Research Campus at the 
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Howard Hughes Medical Institute, near Ashburn, Virginia, and at the Crick-

Jacobs Center for Theoretical and Computational Biology that I direct at the 

Salk Institute in La Jolla (I have abbreviated his list of affiliations). Brenner 

hired David Marr at the LMB to work on computing after Marr had com-

pleted his doctorate and later arranged a position for Marr at the MIT AI 

Lab through his friend and fellow South African Seymour Papert. The ties 

between molecular genetics and neurophysiology were deep, and Sydney 

was at the center of both fields.

At a dinner on one of his visits to La Jolla, I told Sydney a story that I had 

heard many years ago when I was a postdoctoral fellow at the Harvard Med-

ical School. Francis Crick dies and goes to heaven. St. Peter is surprised to 

see this devout atheist, but Francis is there to ask God a question. Directed 

to a wooden shack amid a field strewn with all manner of wheels and 

cogs—failed experiments—Francis finds God at his workbench in a leather 

apron, tinkering with a new organism. “Francis,” says God, “how delightful 

to see you. What can I do for you?” “All my life,” says Francis, “I’ve wanted 

to know the answer to this question: Why do flies have imaginal discs?”3 

“Dear Francis,” replies God, “what a surprise! No one’s ever asked me that 

question before. I’ve been putting imaginal discs into flies for hundreds of 

millions of years and I haven’t had a single complaint.”

Figure 18.1

Sydney Brenner is a legendary figure in biology. He worked on the genetic code, the 

way that base pairs in DNA are transcribed into proteins, and received a Nobel Prize 

for his pioneering work on a new model organism. This photo was from a 2010 inter-

view with The Science Network, http://thesciencenetwork.org/programs/the-science 

-studio/sydney-brenner-part-1.
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Sydney was silent and I wondered whether a story at the expense of his 

close friend may not have been a good idea. “Terry,” he said, “I can tell 

you the moment when that story came to me. Francis and I were sitting 

together in our office and Francis was reading a book on developmental 

biology when he suddenly threw up his hands and said: ‘God knows why 

flies have imaginal discs!’”

I was stunned. How often do you come across the origin of a story you’ve 

known for decades and told innumerable times? I asked Sydney to tell 

me the original version. He said it was entitled “Francisco Crick in Para-

diso”; his story had the same basic structure as mine but the details were 

different4—just as evolution holds to the basic core of its story while chang-

ing many of the details.

I visited Sydney in Singapore in January 2017 to celebrate his ninetieth 

birthday. He no longer travels because of health problems and is confined 

to a wheelchair, but he was as lively and I have ever seen him. Theodosius 

Dobzhansky once said that nothing in biology makes any sense except in 

the light of evolution.5 Sydney gave a riveting lecture on February 21, 2017, 

on bacterial evolution as part of a series, “10-on-10: The Chronicle of Evo-

lution,” at the Nanyang Technological University in Singapore.6 My talk in 

this series on July 14, 2017, about the evolution of the brain began with a 

variation on this theme: Nothing in biology makes any sense except in the 

light of DNA.7

Evolution of Intelligence

Intelligence evolved in many species to solve the problems they faced to 

survive in their environmental niches. Animals that evolved in the ocean 

have different problems to solve than animals that evolved on land. 

Visual perception allows us to sense the world around us, and we have 

developed visual intelligence for interpreting those visual signals. Etholo-

gists, who study the behavior of nonhuman animals in their natural set-

tings, have uncovered abilities and skills that are foreign to humans, such 

as echolocation: bats actively send out auditory signals to probe their 

environments and analyze the returning echoes. This creates an internal 

representation of the outside world that is, to all appearances, as vivid 

as our visual experience. Bats have an auditory intelligence that sorts 

through signals from fluttering insects (to be hunted) and obstacles (to be  

avoided).

Thomas Nagel, a philosopher at New York University, wrote a paper in 

1974 entitled “What Is It Like to Be a Bat?” and concluded that we cannot 
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imagine what the bat world is like without the direct experience of echo-

location.8 But lack of such experience has not stopped us from inventing 

radar and sonar, technologies that allow us to actively probe the world we 

cannot see, nor does it stop blind people from navigating the world by 

becoming attuned to sound reflections. We may not know what it is like to 

be a bat, but we can build bat-like intelligence that helps self-driving cars 

navigate using radar and lidar.

We humans are nature’s champion learners. We can learn faster on a 

broader range of topics, remember more, and accumulate more knowledge 

over more generations than any other species. We created a technology 

called “education” for enhancing how much we can learn in our lifetimes. 

Children and adolescents now spend their formative years sitting in class-

rooms and learning about things in the world that they have never directly 

experienced. Relatively recent human inventions, reading and writing take 

many years to master. But these inventions allow more accumulated knowl-

edge to be passed down to the next generation—as books to be written, 

printed or displayed, and read—than was possible by oral tradition. It is 

writing, reading, and learning, not spoken language, that have made mod-

ern civilization possible.

Where Did We Come From?

What are our evolutionary origins? The La Jolla Group for Explaining the 

Origin of Humans, which I helped found in 1998, started out as a small 

group that held regular meetings to discuss the many sources of evidence 

that might help us answer this question, from paleontology, geophysics, 

anthropology, biochemistry, and genetics all the way to comparative neu-

roscience. It gradually attracted an international membership, becoming 

the UCSD/Salk Center for Academic Research and Training in Anthropog-

eny (CARTA) in 2008.9 And just as NIPS assembled all the tribes of science 

and engineering to understand neural computation, so, in exploring where 

we humans came from and how we got here and in training a new gen-

eration of thinkers to seek answers to these age-old questions, CARTA has 

drawn on insights from all areas of science.10

The lineage that eventually generated the genus Homo split from the 

lineage that led to chimpanzees about 6 million years ago (figure 18.2). 

Chimps are a highly intelligent species, but chimp intelligence is quite dif-

ferent from ours. Attempts to teach chimpanzees the rudiments of language 

resulted in their learning no more than a few hundred signs, which the 

chimps used to express simple needs, though this is an unfair measure of 
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their intelligence. How well would we do if we had to survive in a chimp 

troop? Are all species as self-centered as ours?

One place to find differences between humans and chimps is in our 

DNA. We have known for some time that only 1.4 percent of our 3 billion 

DNA base pairs are different from those in chimps. When the chimpanzee 

genome was first sequenced, it was thought that we would be able to read 

the book of life and discover what makes humans different from chimps. 

Unfortunately, we have still not learned how to read some 90 percent of 

this book.11 Our brains are remarkably similar to those of chimps; neuro-

anatomists have identified the same brain areas in both species. But most 

of the differences between humans and chimps are at the molecular level 

and are subtle, compared to the dramatic differences in our behaviors. Once 

again, nature is cleverer than we are.

The Logic of Life

Orgel’s first rule, Leslie told me, states that every essential reaction in a 

cell has evolved an enzyme to catalyze that reaction. The enzyme not only 

speeds up the reaction but also makes it possible to regulate the reaction 

through interactions with other molecules, so that the cell can be both 

more efficient and more adaptable. Nature starts out with a clever reaction 

pathway, then gradually refines it by adding enzymes and backup path-

ways, but none of it would work in the absence of certain core processes, 

which for cells are the maintenance and replication of DNA, the queen bee 

of cellular biochemicals.

Figure 18.2

Comparison between the chimpanzee brain and the much larger human brain, 

which has evolved a greatly expanded cerebral cortex with many more convolutions. 

From Allman, Evolving Brains, p. 164. Courtesy of John Allman.
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Single cells have adapted to many different conditions and evolved into 

many niches. For example, bacteria have adapted to extreme environments 

that range from hydrothermal vents on the ocean floor to sheets of ice in 

Antarctica and to many more moderate environments, like our stomachs 

and intestines, which harbor thousands of species. Bacteria like Escherichia 

coli (E. coli; figure 18.3) have developed algorithms for swimming up gra-

dients toward food sources. Because they are too small to sense a gradi-

ent directly (a few micrometers across), bacteria use chemotaxis, which 

involves periodically tumbling and setting off in a random direction.12 This 

may seem counterproductive, but by adjusting their swim times to be lon-

ger at higher concentrations, bacteria can reliably climb up the gradient. 

Theirs is a primitive form of intelligence, but bacteria are smarter than the 

smartest biologists, who have yet to figure out how they manage to survive 

Figure 18.3

Scanning electron micrograph of E. coli. Bacteria are the most diverse, robust, and 

successful life-forms on earth. We can learn much about autonomous artificial intel-

ligence by studying them. (NIAID, NIH)
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in such a wide range of environments. More complex forms of intelligence 

are found in multicellular animals. 

We have seen that the temporal difference learning algorithm that 

underlies reinforcement learning can lead to highly complex behaviors, 

made still more complex in humans by deep learning in the cerebral cortex. 

There is a spectrum of intelligent behavior in nature that artificial systems 

can learn from. A new field of science that straddles computer science and 

biology, algorithmic biology, seeks to use the language of algorithms to 

describe problem solving strategies used by biological systems.13 The hope 

is that identifying such biological algorithms will both inspire new com-

puting paradigms in engineering, and will provide a systems-level under-

standing of biological networks. This is the edge of the wedge that could 

eventually explain the nested levels of complexity in biological systems 

across spatial and temporal scales: gene networks, metabolic networks, 

immune networks, neural networks, and social networks—it’s networks all 

the way down. 

Deep learning depends on optimizing a cost function. What are the cost 

functions in nature? The inverse of cost in evolution is called fitness, but 

that is a concept that only has meaning in the context of a concrete set of 

constraints, either from the environment or from the system being opti-

mized. In the brain, there are some innate costs that regulate behavior, such 

as the need for food, warmth, safety, oxygen, and procreation. In reinforce-

ment learning, actions are taken to optimize future rewards. But beyond 

rewards that insure survival, a wide range of rewards can be optimized, as 

is apparent from the bewildering range of human behaviors. Is there some 

underlying universal cost function that is responsible for this diversity?

We are still looking for the core concepts that will give the game away for 

the highest forms of intelligence. We have identified a few key principles, 

but we do not have a conceptual framework that explains how brains work 

as elegantly as DNA does the nature of life. Learning algorithms are a good 

place to look for unifying concepts. Perhaps the progress we are making in 

understanding how deep learning networks solve practical problems will 

yield more clues. Perhaps we will discover the operating systems in cells 

and brains that make evolution possible. If we could solve these problems, 

unimaginable benefits might follow. Nature may be cleverer than we are 

individually, but I see no reason why we, as a species, cannot someday solve 

the puzzle of intelligence.





The Salk Institute for Biological Studies, where I work, is a special place. 

From the outside, it looks like a concrete fortress, but as you enter the cen-

tral courtyard, a broad expanse of travertine stretches out to the Pacific, 

with towers rising along the sides anchoring the otherworldly space (figure 

19.1).1 My lab is in the South Building, located off the courtyard (left side 

of photo). You are greeted on the left with a wall-sized electron microscopic 

photo of the hippocampus, which looks like a cross-section of a plate of 

spaghetti; the entryway opens onto the tearoom, the heart of the Compu-

tational Neurobiology Laboratory.

Some of the world’s most distinguished scientists, including Francis 

Crick, who loved to hold forth with students and colleagues, have gath-

ered around the circular white tea table for discussions on all things scien-

tific (figure 19.2). Indeed, the tearoom became a scene in Crick’s book The  

Astonishing Hypothesis:

Terry Sejnowski's group at the Salk Institute has an informal tea on most after-

noons of the week. These teas are ideal occasions to discuss the latest experimen-

tal results, throw out new ideas, or just gossip about science, politics, or the news 

in general. I went over to tea one day and announced to Pat Churchland and 

Terry Sejnowski that the seat of the Will had been discovered! It was at or near the 

anterior cingulate. When I discussed the matter with Antonio Damasio, I found 

that he also had arrived at the same idea.
2 

I especially remember the day when Francis Crick arrived at tea with 

Beatrice Golomb in 1989. He told me that she wanted to work on neural 

networks and I should hire her.3 Beatrice was a medical/doctoral student at 

UC, San Diego, and had briefly worked with Crick as a graduate student. 

She had wanted to work on neural networks for her doctoral dissertation 

but was not allowed to do so by the Biology Department. I took Crick’s 

advice and learned as much from Beatrice as she learned from me—and 
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I’ve continued to learn from her ever since we were married at Caltech’s 

Athenaeum in 1990.

The tea table traveled with me from Johns Hopkins University; it was the 

first item I purchased for my new lab at my first job there in the Thomas C. 

Jenkins Department of Biophysics in 1981. The department was like an old 

family, and I was the young doted-on son; they gave me the confidence to 

strike out in new directions, for which I am forever grateful. I had adopted 

the afternoon tea tradition as a postdoctoral fellow in the Department of 

Neurobiology at Harvard Medical School. In a large, diverse department, 

this was a way to keep in touch and hear about the experiments that were 

under way down the hall. My lab at the Salk Institute is a miniature univer-

sity, with students from many different backgrounds in science, mathemat-

ics, engineering, and medicine, and teatime is when we all come together 

as a group.

I have been fortunate. My parents valued education and trusted me from 

an early age; I have lived at a time of unprecedented economic growth 

Figure 19.1

Salk Institute for Biological Studies at La Jolla, California, overlooks the Pacific 

Ocean. This landmark building designed by Louis Kahn is a temple of science. This 

is where I come to work every day. Courtesy of Kent Schnoeker, Salk Institute for 

Biological Studies
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and opportunities, which opened my horizons; I have had mentors and 

collaborators who generously shared their insights and advice; and I have 

had the privilege of working with a generation of exceptionally talented 

students. I am especially grateful to Geoffrey Hinton, John Hopfield, Bruce 

Knight, Stephen Kuffler, Michael Stimac, and John Wheeler, as I am to my-
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I am grateful to many others who have helped me write this book. Dis-
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Bingham, founder of The Science Network on the Internet, were a source of 

inspiration. John Doyle’s insights from control theory illuminated my dis-

cussion of the brain’s operating system. A long hike with Cary Staller in the 

mountains around Klosters and Davos in Switzerland clarified the universe 

of algorithms. Barbara Oakley taught me how to reach out to a much bigger  

Figure 19.2

Tearoom of the Computational Neurobiology Laboratory at the Salk Institute in 

2010. Daily teas have been a social incubator for the development of the many learn-

ing algorithms and scientific discoveries that are described in this book. Courtesy of 

the Salk Institute for Biological Studies.
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audience than the classroom. Both Cary and Barbara helped shape the 

way I have told the story of deep learning. Many others helped with feed-
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annual Neuromorphic Engineering Workshop. I am grateful to all of those 

who came to these workshops over the past thirty years, especially John  

Allman, Dana Ballard, Robert Desimone, John Doyle, Katalin Gothard, 

Christof Koch, John Maunsell, William Newsome, Barry Richmond, Michael 

Stryker, and Steven Zucker.

My colleagues at the Salk Institute for Biological Studies and the Uni-

versity of California, San Diego, are a remarkable community of entre-

preneurial and cooperative researchers who are creating the future of the 

biomedical sciences. Faculty and students at the Institute for Neural Com-

putation at UCSD have integrated neuroscience and computation in ways 

that I never dreamed would happen when I founded it in 1990.

The Computational Neurobiology Laboratory (CNL) at the Salk Insti-
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edited with Tomaso Poggio; Neural Computation, a journal that I founded in 



Acknowledgments 273
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pected bend in its long road to publication.

I thank the NIPS community, without whom I would not have writ-

ten The Deep Learning Revolution, though, far from a comprehensive history 

of the field, it focuses on only a few of the topics and people who were 

involved in research on neural networks. The International Neural Network 

Society’s journal Neural Networks has been a stalwart in expanding the reach 

of neural networks. In partnership with the Institute of Electrical and Elec-

tronic Engineering (IEEE), the society holds an annual International Joint 

Conference on Neural Networks. Machine learning also has spawned many 

excellent conferences including the International Conference on Machine 

Learning (ICML), a sister conference to NIPS. The field has benefited greatly 

from all of these organizations and the researchers who contributed to 

them.

At the opening session at NIPS 2018 in Long Beach, I marveled at the 

growth of NIPS: “Little did I know 30 years ago at the first NIPS conference 

that I would be standing here today addressing 8,000 attendees—I thought 

it would only take 10 years.” I visited Geoff Hinton at Mountainview in 

April, 2016. Google Brain has an entire floor of a building. We reminisced 

about the old days and came to the conclusion that we had won, but it 
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An Introduction to Neuroscience

The Deep Learning Revolution only briefly touches on neuroscience, which 

is itself a vast field with a rapidly advancing scientific frontier. The part of 

neuroscience most relevant to deep learning is called “systems neurosci-

ence.” If you want to learn more about the brain and neural networks, a 

good place to start is The Computational Brain, 2nd ed. (MIT Press, 2016) by 
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Patricia S. Churchland and Terrence J. Sejnowski. This book introduces the 

basics of neuroscience and gives applications of neural networks to a wide 

range of brain structures such as the visual system, the oculomotor system 

that guides our eye movements and the way that space is represented in 

the cortex.

Written for a general audience, Liars Lovers, and Heroes: What the New 

Brain Science Reveals about How We Become Who We Are (Harper-Collins, 

2002) by Steven R. Quartz and Terrence J. Sejnowski explores how both our 

noblest and darkest traits are rooted in brain systems so ancient that we 

share them with insects—the same reinforcement algorithms that Deep-

Mind used to train AlphaGo.

The Society for Neuroscience hosts a website (http://www.brainfacts.org/

brain-basics/neural-network-function/) where you can look up information 

about many aspects of brain function and brain disorders.
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Biological Intelligence

IQ and Human Intelligence (Oxford University Press, 2002) by Nicholas 

Mackintosh is a reliable and comprehensive introduction to the psychol-

ogy of intelligence, including social and emotional intelligence. The bio-

logical basis of intelligence depends on the interaction of the brain with 

the world during brain development. Animal intelligence has also been 

extensively studied, and Animal Minds: Beyond Cognition to Conscious-

ness (University of Chicago Press, 1992) by Donald R. Griffin is a good  

introduction.
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Machine Learning
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Neural Networks for Pattern Recognition (Oxford University Press, 1995) by 

Christopher M. Bishop is a good place to learn the fundamentals of neu-

ral networks. The deep connection between information theory and learn-

ing algorithms is beautifully expounded in Information Theory, Inference, 

and Learning Algorithms (Cambridge University Press, 2003) by David J. C. 

MacKay. Deep learning is growing rapidly: Deep Learning: A Practitioner’s 

Approach (O’Reilly Media, 2017) by Josh Patterson and Adam Gibson is a 

good introduction, and Deep Learning (MIT Press, 2016) by Ian Goodfellow, 

Yoshua Bengio, and Aaron Courville is currently the definitive textbook, 

available online (http://www.deeplearningbook.org). Machine Learning: 

A Probabilistic Perspective (MIT Press, 2014) by Kevin P. Murphy is a com-

pendium that covers the broader range of machine learning algorithms. 

Deep reinforcement learning is at the forefront of research, and the defini-

tive textbook is Reinforcement Learning: An Introduction (MIT Press, 1998) 

by Richard S. Sutton and Andrew G. Barto (online draft of forthcoming 

second edition available at http://www.incompleteideas.net/sutton/book/

the-book-2nd.html).





adaptive signal processing Methods that improve the quality of a signal, such as 

an automatic grain control or an adjustable filter that automatically reduces noise.

algorithm A step-by-step recipe that you follow to achieve a goal, not unlike bak-

ing a cake. 

backprop (backpropagation of errors) Learning algorithm that optimizes a neural 

network by gradient descent to minimize a cost function and improve performance.

Bayes’s rule Formula that updates the probability of an event based on new data 

and prior knowledge of conditions related to the event. More generally, Bayesian 

probabilities are beliefs about outcomes based on current and prior data.

Boltzmann machine A neural network model consisting of interacting binary units 

in which the probability of a unit being in the active state depends on its integrated 

synaptic inputs. Named after Ludwig Boltzmann, a nineteenth-century physicist 

who laid the foundations for statistical mechanics. 

constraints Conditions that the solution to an optimization problem must satisfy 

to have a positive value.

convolution Blending one function with another by computing the amount of 

overlap of the one as it is shifted over the other.

cost function Function that specifies the goal of a network and quantifies its perfor-

mance. The goal of learning is to reduce the cost function.

digital assistant A virtual assistant that can help with tasks, like Alexa on Echo, 

Amazon’s smart speaker.

epoch Update of weights during learning after the average gradient has been calcu-

lated from a specified number of examples.

equilibrium Thermodynamic state in which there are no net macroscopic flows of 

matter or of energy. In a Boltzmann machine, where the units are probabilistic, the 

system settles down to an equilibrium state when the inputs are kept constant.

Glossary
G l o s s a r y
G l o s s a r y
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feedback Connections that travel backward in a neural network from higher to 

lower layers creating a loop in the network that allows signals to circulate within it.

feedforward network Layered neural network in which connectivity between  

layers is one way, starting at the input layer and ending at the output layer.

gradient descent Optimization technique in which the parameters are changed 

on every epoch to reduce a cost function, which is a measure of how well a network 

model is performing.

Hopfield net A fully connected neural network model introduced by John Hop-

field. It was guaranteed to converge to a fixed attractor state, which depended on 

the starting state, and could be used to store and retrieve information. This network 

launched a thousand papers.

learning algorithm Algorithm for changing the parameters of a function based on 

examples. Learning algorithms are said to be “supervised” when both inputs and 

desired outputs are given or “unsupervised” when only inputs are given. Reinforce-

ment learning is a special case of a supervised learning algorithm when the only 

feedback is a reward for good performance.

logic Mathematical inference based on assumptions that can only be true or false. 

Mathematicians use logic to prove theorems.

machine learning Branch of computer science that gives computers the ability to 

learn to perform a task from data without being explicitly programmed.

millisecond One thousandth of a second (0.001 sec). The time it takes for one cycle 

of a 1 kilohertz tone.

MOOC (massive open online course) Course of lectures freely available over the 

Internet on any of a wide range of topics. The first MOOC was offered in 2006, and 

there are now more than 9,400 MOOCS attended by 91 million learners in January, 

2018.

neuron Specialized brain cell that integrates inputs from other neurons and sends 

outputs to other neurons.

normalization Maintaining the amplitude of a signal within fixed limits. One way 

to normalize a time-varying positive signal is to divid it by its maximum value which 

is then bounded by 1.

optimization Process of maximizing or minimizing a function by systematically 

searching through input values from within an allowed set to find the optimal value 

of the function.

overfitting State reached by a learning algorithm when the number of adjustable 

parameters in a network model is much greater than the number of training data 

and the algorithm uses the excess capacity to memorize the examples. Although 
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overfitting greatly reduces a network’s ability to generalize to new examples, it can 

be reduced by regularization.

perceptron A simple neural network model consisting of one unit and inputs with 

variable weights that can be trained to classify inputs into categories. 

plasticity Changes in a neuron that alter its function, such as changes in its con-

nection strengths (“synaptic plasticity”) or in how the neuron responds to its inputs 

(“intrinsic plasticity”).

probability distribution Function that specifies the probability of occurrence of all 

possible states of a system or outcomes in an experiment.

recurrent network Neural network whose feedback connections allow signals to 

circulate within it.

regularization Method to avoid overfitting a network model with many parameters 

when the training data are limited, such as weight decay, in which all the weights 

in the network decrease on every epoch of training, and only the weights with large 

positive gradients survive.

scaling How the complexity of an algorithm scales with the size of the problem:; 

For example, adding up n number scales with n, but multiplying all pairs of n num-

ber scales with n2
.

skunk works A group working on advanced or secret projects with a high degree of 

autonomy within an organization. Derived from the name of the moonshine factory 

in the comic strip Li’l Abner.

sparsity principle A sparse representation of a signal, such as EEG and fMRI, is one 

that approximates the signal by the weighted sum of only a few fixed basis func-

tions, which for independent component analysis are called sources. In a popula-

tion of neurons, a sparse representation of an input is one where only a few neurons 

are highly active. This reduces interference with other patterns of activity that rep-

resent other inputs. 

spine Thorny excrescence on a dendrite of a neuron that serves as the postsynaptic 

site of a synapse.

synapse Specialized junction between two neurons where a signal is passed from 

the presynaptic to the postsynaptic neuron.

training and test sets Because performance on a training set is not a good estimate 

of how well a neural network will perform on new inputs, a test set not used during 

training gives a measure how well the network generalizes. When data sets are small, 

a single sample left out of the training set can be used to test the performance of 

the network trained on the remaining examples, and the process repeated for every 

sample to get an average test performance. This is a special case of cross-validation 

where n = 1, in which n subsamples are held out.
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Turing machine Hypothetical computer invented by Alan Turing (1937) as a simple 

model for mathematical calculation. A Turing machine consists of a “tape” that can 

be moved back and forth, a “head” that has a “state” that can change the property of 

the active cell beneath it, and a set of instructions for how the head should modify 

the active cell and move the tape. At each step, the machine may modify the prop-

erty of the active cell and change the state of the head. After this, it moves the tape 
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